238

A Sort of New Improved Algorithm For Total Least Square

Deng Yonghe^{1,2,3,*}

¹College of Engineering and Designing, Lishui College, Lishui, Zhejiang, 323000, P.R. China; ²School of Geodesy and Geomatics, Wuhan University, Wuhan, 430079, P.R. China; ³School of Continuous Education, Wuhan University, Wuhan, 430079, P.R. China; ³School of Continuous Education, Wuhan University, Wuhan, 430079, P.R. China; ⁴School of Continuous Education, Wuhan University, Wuhan, 430079, P.R. China; ⁴School of Continuous Education, Wuhan University, Wuhan, 430079, P.R. China; ⁴School of Continuous Education, Wuhan University, Wuhan, 430079, P.R. China; ⁴School of Continuous Education, Wuhan University, Wuhan, 430079, P.R. China; ⁴School of Continuous Education, Wuhan University, Wuhan, 430079, P.R. China; ⁴School of Continuous Education, Wuhan University, Wuhan, 430079, P.R. China; ⁴School of Continuous Education, Wuhan University, Wuhan, 430079, P.R. China; ⁴School of Continuous Education, Wuhan University, Wuhan, 430079, P.R. China; ⁴School of Continuous Education, Wuhan University, Wuhan, 430079, P.R. China; ⁴School of Continuous Education, Wuhan University, Wuhan, 430079, P.R. China; ⁴School of Continuous Education, Wuhan University, Wuhan, 430079, P.R. China; ⁴School of Continuous Education, Wuhan University, Wuhan, 430079, P.R. China; ⁴School of Continuous Education, Wuhan University, Wuhan, 430079, P.R. China; ⁴School of Continuous Education, Wuhan University, Wuhan, 430079, P.R. China; ⁴School of Continuous Education, Wuhan University, Wuhan, 430079, P.R. China; ⁴School of Continuous Education, ⁴School of Continu

Abstract: Aim to blemish of total least square algorithm based on error equation of virtual observation, this paper put forward and deduced a sort of new improved algorithm which selects essential unknown parameters among designing matrix, and then, doesn't consider condition equation of unknown parameters among designing matrix. So, this paper perfected and enriched algorithm, and sometimes, new method of this paper is better. Finally, the results of examples showed that new mothod is viable and valid.

Keywords: Error equation, essential unknown parameters, mean square error of unit weight, total least square, virtual observation.

1. INTRODUCTION

Literatures [1, 2] made some reasonable improvement such as putting forward virtual observation method and listing error equations of virtual observation for total least square algorithm, but there existed some problem. Aim to blemish of total least square algorithm based on literatures [1, 2], literatures [3] has put forward and deduced further improved algorithm which considered condition equation of unknown parameters among designing matrix. But some times, the improved algorithm isn't always better, so, this paper proposed and deduced a sort of new algorithm which selects essential unknown parameters among designing matrix, and then, doesn't consider condition equation of unknown parameters among designing matrix, perfects and enriches algorithm of total least square algorithm. Finally, imitative example showed that new method is viable and valid.

2. THE PRINCIPLE OF IMPROVED ALGORITHM OF TOTAL LEAST SQUARE

2.1. Error Equations of Actual Observations

We suppose there exists function model of adjustment of indirect observations based on actual observation [1-3]

$$\hat{L} = \hat{B} \hat{X}^{-} d , P_{n,1} , P_{n,n}$$
(1)

where,

$$\hat{L} = \begin{bmatrix} \hat{L}_1 \\ \hat{L}_2 \\ \vdots \\ \hat{L}_n \end{bmatrix}, \quad \hat{B} = \begin{bmatrix} \hat{B}_{11} & \hat{B}_{12} & \cdots & \hat{B}_{1t} \\ \hat{B}_{21} & \hat{B}_{22} & \cdots & \hat{B}_{2t} \\ \vdots & \vdots & \vdots & \vdots \\ \hat{B}_{n1} & \hat{B}_{n2} & \cdots & \hat{B}_{nt} \end{bmatrix},$$

*Address correspondence to this author at the College of Engineering and Designing, Lishui University, Lishui, Zhejiang, 323000, P.R. China; Tel: +86 18969588403; +86 15925722009

E-mails: lsxydengyonghe@sina.com; a15925722009@163.com

$$\hat{X} = \begin{bmatrix} \hat{X}_1 \\ \hat{X}_2 \\ \vdots \\ \hat{X}_n \end{bmatrix}, \quad d_n = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{bmatrix}.$$

n--- quantity of actual observations;

t--- necessary quantity of unknown parameters;

 $\hat{L}_{n,1}$ --- estimated value of column vector of observations;

 \hat{B} --- estimated value of designing matrix(part of \hat{B} may n,t

be constant and haven't error);

 \hat{X} ---estimated value of column vector of unknown parametr,1

ters;

d --- column vector of constant; n,1

 P_L --- weight matrix of actual observations. n,n

We suppose any element of $\hat{B}_{n,i}$ can be expressed by unknown parameters

 $\hat{Y} = \left(\hat{Y}_{1}, \hat{Y}_{2}, \dots, \hat{Y}_{t'} \right)^{T} .$ There, \hat{Y}_{i} and \hat{Y}_{j} $(1 \le i, j \le t' \text{ and } i \ne j)$ are independent. Then, based on Eq.1, we can obtain

$$V_{L} = \begin{bmatrix} B_{n,t}^{0} & A \\ n,t & n,t' \end{bmatrix} \begin{bmatrix} \hat{x} \\ t,1 \\ \hat{y} \\ t',1 \end{bmatrix} - \begin{pmatrix} d + L - B_{n,t}^{0} X^{0} \end{pmatrix} , P_{L} (2)$$

1874-8368/15

2015 Bentham Open

where:

where. L ----actual observations; n,1 V_L ---- residuals of observations L; n,1 $\hat{L} = V_L + L$; n,1 n,1 B^0 ---- approximations of \hat{B} ; n,t n,t $\Delta \hat{B}$ ---- residuals of B^0 ; n,t n,t

$$\hat{B} = B_{n,t}^{0} + \Delta B_{n,t}^{2}$$

t' --- necessary quantity of unknown parameters of element of \hat{B} ; n,t

In Eq. 2, we don't consider $\Delta \hat{B}_{n,j} \hat{X}_{1,1}$ which is very small. Obviously, Eq. 2 of this paper is different from homologous equations of literatures [1-3].

2.2. Error Equations of Virtual Observations

Because we suppose any element of $\hat{B}_{n,t}$ can be expressed by unknown parameters

$$\hat{Y}_{i',i} = \left(\hat{Y}_{1}, \hat{Y}_{2}, \dots, \hat{Y}_{i'}\right)^{T}, \text{ and } \hat{Y}_{i} \text{ and } \hat{Y}_{j} \quad (1 \le i, j \le t')$$

and $i \ne j$)

The Open Construction and Building Technology Journal, 2015, Volume 9 239

are independent, so, if \hat{B}_{ij} hasn't error, we don't list error equation; if \hat{B}_{ij} has error, we list error equation

$$V_{B_{ij}} = f_{ij} \hat{y}_{I,i'} - (B_{ij} - B_{ij}^{0}), P_{B_{ij}}$$
(3)
where:

 $B_{ij} \text{ --- observations of } \hat{B}_{ij};$ $B_{ij}^{0} \text{ --- approximations of } \hat{B}_{ij};$ $V_{B_{ij}} \text{ --- residuals of } B_{ij};$ $P_{B_{ij}} \text{ --- weight matrix of virtual observation } B_{ij};$ $f_{ijk} = \frac{\partial \hat{B}_{ij}}{\partial \hat{y}_{k}} \Big| \hat{B}_{ij} = B_{ij}^{0}, \ k = 1, 2, \cdots, t';$

$$f_{ij} = \left(f_{ij1} f_{j2} \cdots f_{ijt'} \right).$$

Based on Eq.3, We can obtain

$$V_{B} = \int_{k,l' \, t', l} \hat{V} - I_{B}, \quad P_{k,k}$$
(4)

where:

k---quantity of virtual observation($0 \le k \le nt$);

$$P_{B}_{k,k}$$
 --- weight matrix of virtual observations;

$$V_{B} = \begin{bmatrix} V_{B_{11}} \\ V_{B_{21}} \\ \vdots \\ V_{B_{n1}} \\ V_{B_{12}} \\ V_{B_{12}} \\ V_{B_{12}} \\ V_{B_{12}} \\ V_{B_{22}} \\ \vdots \\ V_{B_{n2}} \\ \vdots \\ V_{B_{n2}} \\ \vdots \\ V_{B_{n1}} \end{bmatrix} \begin{bmatrix} B_{n1} - B_{n1}^{0} \\ B_{12} - B_{n1}^{0} \\ B_{12} - B_{12}^{0} \\ B_{12} - B_{12}^{0} \\ \vdots \\ B_{n2} - B_{n2}^{0} \\ \vdots \\ B_{n2} - B_{n2}^{0} \\ \vdots \\ B_{n1} - B_{n1}^{0} \end{bmatrix}, f = \begin{bmatrix} f_{11} \\ 1t' \\ f_{21} \\ 1t' \\ \vdots \\ f_{n1} \\ 1t' \\ f_{12} \\ 1t' \\ \vdots \\ f_{n2} \\ 1t' \\ \vdots \\ f_{nn,t} \\ 1t' \end{bmatrix}$$

If \hat{B}_{ii} hasn't error, we should delete homologous

elements of VB, f and lB in Eq.4 , and homologous k, 1, k, t', k, 1

elements of
$$PB^{\cdot}_{k,k}$$

Obviously, Eq. 4 of this paper is still different from homologous equations of literatures [1-3].

2.3. Total Error Equations

Based on Eq. 2 and Eq. 4, we can obtain total error equations

$$V_{n+k,1} = \frac{C}{n+k,t+t't+t',1} - \frac{2}{n+k,1}, P$$
(5)

where:

$$V_{n+k,1} = \begin{bmatrix} V_L \\ n,1 \\ V_B \\ k,1 \end{bmatrix}, \begin{array}{c} C \\ n+k,t+t' = \begin{bmatrix} B^0 & A \\ n,t & n,t' \\ 0 & f \\ k,t & k,t' \end{bmatrix}, \begin{array}{c} \hat{z} \\ t+t',1 = \begin{bmatrix} \hat{x} \\ t,1 \\ \hat{y} \\ t',1 \end{bmatrix}$$
$$l_{n+k,1} = \begin{bmatrix} d + L - B^0 X^0 \\ n,1 & n,1 & n,t & t,1 \\ 1B \\ k,1 \end{bmatrix}.$$

P--- total weight matrix;

$$\begin{array}{c}
0 \\
k, t
\end{array} \text{ of left bottom of} \begin{bmatrix}
B^{0} & A \\
n,t & n,t' \\
0 & f \\
k,t & k,t'
\end{bmatrix} \text{ is zero matrix.}$$

Obviously, Eq. 5 of this paper is different from homologous equations of literatures [1-3].

2.4. Solving out Total Error Equations [4]

Based on least square method and Eq. 5, we can obtain estimated values of unknown parameters

$$\hat{z}_{t+t',1} = \begin{pmatrix} C & T \\ t+t', n+k & P \\ n+k, n+kn+k, t+t' \end{pmatrix}^{-1} \begin{pmatrix} C & T \\ t+t', n+k & P \\ n+k, n+kn+k, 1 \end{pmatrix}$$
(6)

estimated value of mean square error of unit weight

$$\hat{\sigma}_{0} = \pm \sqrt{\frac{V^{T} P V}{\frac{1, n+k \, n+k, n+k \, n+k, 1}{(n+k) - (t+t')}}}$$
(7)

and estimated values of variances and covariance of unknown parameters

$$D_{\hat{z}\hat{z}} = \hat{\sigma}_0^2 \begin{pmatrix} C & T \\ t+t', n+k & P & C \\ t+t', n+k & n+k, n+kn+k, t+t' \end{pmatrix}^{-1}$$
(8)

In this paper, \hat{B}_{ij} may come from $\hat{Y}_{t',1}$ or V_B , and results $k_{i,1}$

of the two method are not same, though the final alternate results are very small. In order to data consistence of estimated value of designing matrix, this paper selected that \hat{B}_{ii}

came from \hat{Y} . t',1

Obviously, Eq. 6, Eq. 7 and Eq. 8 of this paper are different from homologous equations of literatures [1-3].

3. FIRST IMITATIVE EXAMPLE

Suppose there existed a plane curve such as

$$\hat{Y}_{i} = \hat{a}_{0} + \hat{a}_{1}\hat{X}_{i} + \hat{a}_{2}\hat{X}_{i}^{2} + \hat{a}_{3}\hat{X}_{i}^{3} \quad i = 1, 2, \cdots, n$$
(9)

where:

 $\hat{a}_0, \hat{a}_1 \hat{a}_2$ and \hat{a}_3 --- estimated values of unknown coefficient;

 X_i and Y_i --- measured data with error;

 \hat{X}_i and \hat{Y}_i --- estimated value of X_i and Y_i .

and we obtained coordinations of 10 points such as Table 1 based on imitative example.

Table 1. Measured data of plane curve.

Point Name	X (m)	Y (m)
N0.1	3.536	125.145
N0.2	7.319	958.067
N0.3	1.527	15.860
N0.4	4.311	214.911
N0.5	5.473	418.513
N0.6	8.314	1384.036
N0.7	10.639	2834.032
N0.8	2.877	72.382
N0.9	13.521	5712.836
N0.10	15.392	8369.751

3.1. Error Equations of Actual Observations

Based on Eq. 9, we can obtain error equation

$$V_{10,1} = \hat{B} \left(\hat{a}_0 \quad \hat{a}_1 \quad \hat{a}_2 \quad \hat{a}_3 \right)^T - Y_{10,1} , P_Y$$
(10)

where:

$$V_{Y} = \begin{bmatrix} V_{Y_{1}} \\ V_{Y_{2}} \\ \vdots \\ V_{Y_{10}} \end{bmatrix}, \quad \hat{B} = \begin{bmatrix} 1 & \hat{X}_{1} & \hat{X}_{1}^{2} & \hat{X}_{1}^{3} \\ 1 & \hat{X}_{2} & \hat{X}_{2}^{2} & \hat{X}_{2}^{3} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \hat{X}_{n} & \hat{X}_{n}^{2} & \hat{X}_{n}^{3} \end{bmatrix}, \quad Y_{10,1} = \begin{bmatrix} Y_{1} \\ Y_{2} \\ \vdots \\ Y_{10} \end{bmatrix}$$

$$V_{Y_i}$$
 (*i* = 1,2,...,10) --- residuals of Y_i (*i* = 1,2,...,10);

PY ---- weight matrix of actual observations.

Element of $\hat{B}_{10,4}$ can be expressed by unknown parameters $\hat{X}_{i} = (\hat{X}_{1}, \hat{X}_{2}, \dots, \hat{X}_{10})^{r}$, and suppose \hat{X}_{i} and \hat{X}_{j} $(1 \le i, j \le 10$ and $i \ne j$) are independent. Then, we can obtain error equations of actual observations

A Sort of New Improved Algorithm

$$V_{Y} = \begin{bmatrix} B_{0} & A \\ 10,1 & 10,10 \end{bmatrix} \hat{z} - l_{Y} , P_{Y}$$
(11)

where:

$$B_{10,4}^{0} = \begin{bmatrix} 1 & X_{1}^{0} & (X_{1}^{0})^{2} & (X_{1}^{0})^{3} \\ 1 & X_{2}^{0} & (X_{2}^{0})^{2} & (X_{2}^{0})^{3} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & X_{10}^{0} & (X_{10}^{0})^{2} & (X_{10}^{0})^{3} \end{bmatrix};$$

$$A_{0,00}^{0} = diag(A_{1} A_{2} \cdots A_{10});$$

$$\hat{f}_{10,1}^{2} = \begin{pmatrix} \delta \hat{a}_{0} & \delta \hat{a}_{1} & \delta \hat{a}_{2} & \delta \hat{a}_{3} & \hat{x}_{1} & \hat{x}_{2} & \cdots & \hat{x}_{10} \end{pmatrix}^{T};$$

$$I_{ij}^{V} = \begin{pmatrix} Y_{10,i}^{-} - B_{10,i}^{0} a_{i}^{0} \\ i_{0,i}^{-} a_{i,i}^{0} a_{i,i}^{0} \end{pmatrix};$$

$$\chi_{i}^{0}(i=1,2,\cdots,10) - \text{approximations of } \hat{f}_{i}(i=1,2,\cdots,10);$$

$$\hat{x}_{i}(i=1,2,\cdots,10) - \text{residuals of } X_{i}^{0}(i=1,2,\cdots,10);$$

$$\hat{x}_{i} = x_{i}^{0} + \hat{x}_{i}(i=1,2,\cdots,10);$$

$$A_{i} = a_{i}^{0} + 2a_{2}^{0}X_{i}^{0} + 3a_{3}^{0}(X_{i}^{0})^{2}, (i=1,2,\cdots,10);$$

$$\hat{a}_{i}^{0}(i=0,1,2,3) - \text{approximations of } \hat{a}_{i}(i=0,1,2,3);$$

$$\hat{b}_{i}\hat{a}_{i}(i=0,1,2,3) - \text{residuals of } x_{i}^{0}(i=0,1,2,3);$$

$$\hat{a}_{i} = a_{i}^{0} + \delta \hat{a}_{i}(i=0,1,2,3);$$

$$a_{4,1}^{0} = \begin{pmatrix} a_{0}^{0} & a_{1}^{0} & a_{2}^{0} & a_{3}^{0} \end{pmatrix}^{T}.$$

3.2. Error Equations of Virtual Observations

Because
$$\hat{B}_{i1} = 1(i = 1, 2, \dots, 10)$$
 of $\hat{B}_{10,4}$ hasn't error, we

don't list error equation of virtual observation; and because others of \hat{B} have error, we should list error equations of 10,4

virtual observations.

Because element of \hat{B} can be expressed by parameters 10,4

$$\hat{X}_{10,i} = (\hat{X}_{1}, \hat{X}_{2}, \dots, \hat{X}_{10})^{T}$$
, suppose \hat{X}_{i} and \hat{X}_{j} $(1 \le i, j \le 10)$

and $i \neq j$) are independent, we can obtain error equations of virtual observations

The Open Construction and Building Technology Journal, 2015, Volume 9 241

$$V_B = f \quad \hat{x} - l_B , P_B$$
30,1 30,1010,1 30,1 30,1 30,30
(12)

where:

$$V_{B_{101}}^{B} = \begin{pmatrix} V_{B_{12}} & V_{B_{22}} & \cdots & V_{B_{102}} & V_{B_{13}} & V_{B_{23}} & \cdots & V_{B_{103}} & \cdots & V_{B_{104}} \end{pmatrix}^{T}$$

$$\int_{30,10}^{I} = \begin{pmatrix} 1 & 1 & & & & & \\ & 1 & \ddots & & & & \\ & & 2X_{1}^{0} & & & & \\ & & & 2X_{2}^{0} & & & \\ & & & & 2X_{10}^{0} & & \\ & & & & & 2X_{10}^{0} & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

3.3. Total Error Equations

Based on Eq. 11 and Eq. 12, we can obtain total error equations

$$V = C \hat{z} - l , P$$
40,1414,1 40,1 40,40
(13)

where:

$$V_{40,1} = \begin{bmatrix} V_{Y} \\ 10,1 \\ V_{B} \\ 30,1 \end{bmatrix}, C_{40,14} = \begin{bmatrix} B^{0} & A \\ 10,4 & 10,10 \\ 0 & f \\ 30,4 & 30,10 \end{bmatrix}, l_{40,1} = \begin{bmatrix} l_{Y} \\ 10,1 \\ l_{B} \\ 30,1 \end{bmatrix}, 0 \text{ of left bottom of } \begin{bmatrix} B^{0} & A \\ 10,4 & 10,10 \\ 0 & f \\ 30,4 & 30,10 \end{bmatrix} \text{ is zero matrix,}$$

 $P \rightarrow --$ total weight matrix. 40,40

3.4. Solving out Total Error Equations

Based on least square method and Eq.13, we can obtain estimated values of unknown parameters

1

$$\hat{z}_{14,1} = \begin{pmatrix} C & T \\ 14,40 & P \\ 40,4040,14 \end{pmatrix}^{-1} \begin{pmatrix} C & T \\ 14,40 & P \\ 40,4040,1 \end{pmatrix}^{-1} (14)$$

estimated value of mean square error of unit weight

Table 2. Iterative Computing $\hat{a}_{0}, \hat{a}_{1}, \hat{a}_{2}$ and \hat{a}_{3}

Iterative times	First	Second	Third	Fourth
$\hat{\pmb{\sigma}}_{\scriptscriptstyle 0}$	± 0.257497982	± 0.25736601	± 0.257366001	± 0.257366001
\hat{a}_{\circ}	-0.4282326	-0.47119948	-0.47160641	-0.47161343
\hat{a}_1	2.91045167	2.92884547	2.929012661	2.929015863
â2	1.51054987	1.508330965	1.508311498	1.508311101
â3	2.18464297	2.1847223	2.184722976	2.184722991
Table 3. Iterative				

Table 3. Iterative computing variances and covariance.

Iterative times		Matrix of variances and cova	riance of $\hat{a}_{\scriptscriptstyle 0}$, $\hat{a}_{\scriptscriptstyle 1}$, $\hat{a}_{\scriptscriptstyle 2}$ and $\hat{a}_{\scriptscriptstyle 3}$	
	2.097672	-0.948840	0.117942	-0.004282
~ .	-0.948840	0.472876	-0.061947	0.002321
first	0.117942	-0.061947	0.008448	-0.000325
	-0.004282	0.002321	-0.000325	1.3E-05
	2.185027	-0.985111	0.122220	-0.004433
	-0.985111	0.487931	-0.063721	0.002383
second	0.122220	-0.063721	0.008656	-0.000332
	-0.004433	0.002383	-0.000332	1.3E-05
	2.186504	-0.985701	0.122288	-0.004435
	-0.985701	0.488168	-0.063748	0.002384
third	0.122288	-0.063748	0.008660	-0.000333
	-0.004435	0.002384	-0.000332	1.3E-05
	2.186528	-0.985711	0.122290	-0.004435
fourth	-0.985711	0.488172	-0.063749	0.002384
	0.122290	-0.063749	0.008660	-0.000333
	-0.004435	0.002384	-0.000332	1.3E-05

$$\hat{\sigma}_{0} = \pm \sqrt{\frac{V^{T} P V}{\frac{1,40\,40,40\,40,1}{(10+30) - (4+10)}}}\tag{15}$$

and estimated values of cofactor matrix of unknown parameters

$$D_{\hat{z}\hat{z}}^{2} = \hat{\sigma}_{0}^{2} \left(\begin{matrix} C & T \\ 14,40 & P & C \\ 14,40 & 40,4040,14 \end{matrix} \right)^{-1}$$
(16)

3.5. Results of Iterative Computing of This paper

If we select No. 1, No. 2, No. 3 and No. 4 of Table 1, we can obtain approximations of unknown coefficient

 $a_{4,1}^{0} = (1.197125 \ 2.027197 \ 1.632403 \ 2.179726)^T$

In order to simplicity, this paper seleted total weight matrix

P as unit weight matrix, then , we can obtain Table 2 and 40,40

Table 3 according to new method of this paper, obtain Table 4 and Table 5 according to the method of Literatures [1-2], and obtain Table 6 and Table 7 according to Literatures [3].

Because our aim is to solve out curve, so, in Table 2, Table 3, Table 4, Table 5, Table 6, and Table 7, this paper only listed mean square error of unit weight, coefficients and their variances and covariance.

3.6. Results of Iterative Computing Based on Method of Literatures [1, 2]

Table 4. Iterative Computing $\hat{a}_0, \hat{a}_1, \hat{a}_2$ and \hat{a}_3 .

Iterative times	First	Second	Third	Fourth
$\hat{\sigma}_{\circ}$	± 0.377164774	± 0.306303861	± 0.293593374	± 0.289064237
\hat{a}_0	-0.08473767	-2.40450675	-3.29012507	-3.98370589
\hat{a}_1	2.750551874	3.950898798	4.412274767	4.775093715
\hat{a}_2	1.530753891	1.370558058	1.308644367	1.259795641
â3	2.183902004	2.189966546	2.192319246	2.19417964
Fable 5. Iterative computing				
Iterative times				

 Table 5.
 Iterative computing variances and covariance.

Iterative times		Matrix of variances and co	variance of $\hat{a}_0, \hat{a}_1, \hat{a}_2$ and \hat{a}_3	
	6.836696	-3.205142	0.406789	-0.014961
first	-3.205142	1.668317	-0.223720	0.008497
Ilist	0.406789	-0.223720	0.031304	-0.001223
	-0.014961	0.008497	-0.001223	4.9E-05
	4.747154	-2.181921	0.273889	-0.010007
4	-2.181921	1.137142	-0.152644	0.005802
second	0.273889	-0.152644	0.021566	-0.000848
	-0.010007	0.005802	-0.000848	3.4E-05
	9.157135	-4.363607	0.558724	-0.020657
41.1.1	-4.363607	2.268892	-0.303995	0.011539
third	0.558724	-0.303995	0.042199	-0.001640
	-0.020657	0.011539	-0.001640	6.5E-05
	10.780828	-5.159566	0.662257	-0.024521
for weath	-5.159566	2.683191	-0.359551	0.013649
fourth	0.662257	-0.359551	0.049830	-0.001935
	-0.024521	0.013649	-0.001935	7.6E-05

3.7. Results of Iterative Computing Based on Method of Literatures [3]

Table 6. Iterative Computing \hat{a}_0 , \hat{a}_1 , \hat{a}_2 and \hat{a}_3 .

Iterative times	First	Second	Third	Fourth
$\hat{\sigma}_0$	± 0.257497982	± 0.25736601	± 0.257366001	± 0.257366001
\hat{a}_0	-0.4282326	-0.47119948	-0.47160641	-0.47161343
\hat{a}_1	2.91045167	2.92884547	2.929012661	2.929015863
â2	1.51054987	1.508330965	1.508311498	1.508311101
â3	2.18464297	2.1847223	2.184722976	2.184722991

Iterative times	Ν	Matrix of variances and covariance of \hat{a}_0 , \hat{a}_1 , \hat{a}_2 and \hat{a}_3			
	2.097672	-0.948840	0.117942	-0.004282	
first	-0.948840	0.472876	-0.061947	0.002321	
IIISt	0.117942	-0.061947	0.008448	-0.000325	
	-0.004282	0.002321	-0.000325	1.3E-05	
	2.185027	-0.985111	0.122220	-0.004433	
	-0.985111	0.487931	-0.063721	0.002383	
second	0.122220	-0.063721	0.008656	-0.000332	
	-0.004433	0.002383	-0.000332	1.3E-05	
	2.186504	-0.985701	0.122288	-0.004435	
4114	-0.985701	0.488168	-0.063748	0.002384	
third	0.122288	-0.063748	0.008660	-0.000333	
	-0.004435	0.002384	-0.000332	1.3E-05	
	2.186528	-0.985711	0.122290	-0.004435	
	-0.985711	0.488172	-0.063749	0.002384	
fourth	0.122290	-0.063749	0.008660	-0.000333	
	-0.004435	0.002384	-0.000332	1.3E-05	

T 11 H	T		•		•
Table 7.	Iterative com	niifing	variances	and	covariance
I abic / .	itti ati tt tom	puung	var lances	anu	covariance.

3.8. Results of Comparison Analysis

From Table 2, Table 3, Table 4, Table 5, Table 6, and Table 7 of this imitative example, we can find out:

- (1) New method of this paper is better at algorithm being stable, mean square error of unit weight being small, and matrix of variances and covariance of \hat{a}_0 , \hat{a}_1 , \hat{a}_2 and \hat{a}_3 being stable and small than the method of literatures [1, 2].
- (2) The results of new method of this paper is almost as same as the results of the method of literature [3].

In a word, this example showed that new mothod of this paper is viable and valid and still supported literature [3].

4. SECOND IMITATIVE EXAMPLE

If Table 1 changes into Table 8, we can obtain Table 9 and Table 10 according to new method of this paper, obtain Table 11 and Table 12 according to the method of Literatures [1-2], and obtain Table 13 and Table 14 according to Literatures [3].

If we select No. 1, No. 2, No. 3 and No. 4 of Table **8**, we can obtain approximations of unknown coefficient $a_{4,1}^{0} = (2.360120 \ 1.788430 \ 0.341557 \ 0.725756)^{T}$, and obtain follow computation.

4.1. Results of Iterative Computing of This paper

 Table 8.
 Measured data of plane curve.

Point name	X (m)	Y (m)
N0.1	1.363	7.270
N0.2	0.596	3.701
N0.3	2.419	18.958
N0.4	1.541	8.583
N0.5	3.125	33.061
N0.6	2.113	14.587
N0.7	1.894	11.981
N0.8	2.151	15.084
N0.9	0.953	4.962
N0.10	1.581	8.951

Iterative times	First	Second	Third	Fourth
$\hat{\sigma}_0$	± 0.006406091	± 0.006406885	± 0.006406885	± 0.006406885
\hat{a}_0	2.61877099	2.61971445	2.61972163	2.61972169
\hat{a}_1	1.03091098	1.03000236	1.02998864	1.02998853
â2	0.94419441	0.94439666	0.94440431	0.94440437
â3	0.58970185	0.58970223	0.58970094	0.58970094

Table 9. Iterative computing \hat{a}_0 , \hat{a}_1 , \hat{a}_2 and \hat{a}_3 .

Table 10. Iterative computing variances and covariance.

able 10. Iterative o	computing variances and cova	ariance.		
Iterative times		Matrix of variances and cova	riance of $\hat{a}_{\scriptscriptstyle 0}$, $\hat{a}_{\scriptscriptstyle 1}$, $\hat{a}_{\scriptscriptstyle 2}$ and \hat{a}	3
	0.001725	-0.003180	0.001738	-0.000288
first	-0.003180	0.006195	-0.003497	0.000593
nrst	0.001738	-0.003497	0.002018	-0.000348
	-0.000288	0.000593	-0.000348	0.000061
	0.001651	-0.003069	0.001683	-0.000280
,	-0.003069	0.006029	-0.003416	0.000580
second	0.001683	-0.003416	0.001979	-0.000341
	-0.000280	0.000580	-0.000341	0.000060
	0.001650	-0.003068	0.001683	-0.000280
ab in d	-0.003068	0.006026	-0.003414	0.000580
third	0.001683	-0.003414	0.001978	-0.000341
	-0.000280	0.000580	-0.000341	0.000060
	0.001650	-0.003068	0.001683	-0.000280
found	-0.003068	0.006026	-0.003414	0.000580
fourth	0.001683	-0.003414	0.001978	-0.000341
	-0.000280	0.000580	-0.000341	0.000060

4.2. Results of Iterative Computing Based on Method of Literatures [1-2]

Table 11. Iterative computing \hat{a}_0 , \hat{a}_1 , \hat{a}_2 and \hat{a}_3 .

Iterative times	First	Second	Third	Fourth
$\hat{\sigma}_0$	± 0.008408085	± 0.010151230	± 0.010207209	± 0.010210152
\hat{a}_0	2.63276735	2.61192737	2.62314999	2.62202865
\hat{a}_1	1.00400443	1.04681364	1.02324480	1.02557058
â2	0.95924510	0.93430879	0.94825276	0.94688871
â3	0.58716728	0.59148182	0.58904186	0.58927905

Iterative times	Matrix of variances and covariance of \hat{a}_0 , \hat{a}_1 , \hat{a}_2 and \hat{a}_3			
	0.005260	-0.010251	0.005794	-0.000984
first	-0.010251	0.021089	-0.012296	0.002129
liist	0.005794	-0.012296	0.007328	-0.001289
	-0.000984	0.002129	-0.001289	0.000230
	0.005110	-0.009952	0.005623	-0.000954
	-0.009952	0.020474	-0.011937	0.002067
second	0.005623	-0.011937	0.007116	-0.001252
	-0.000954	0.002067	-0.001252	0.000223
	0.005366	-0.010463	0.005915	-0.001004
third	-0.010463	0.021522	-0.012548	0.002172
tnira	0.005915	-0.012548	0.007475	-0.001315
	-0.001004	0.002172	-0.001315	0.000234
	0.005291	-0.010312	0.005829	-0.000989
fourth	-0.010312	0.021213	-0.012367	0.002141
fourth	0.005829	-0.012367	0.007369	-0.001296
	-0.000989	0.002141	-0.001296	0.000231

 Table 12. Iterative computing variances and covariance.

4.3. Results of Iterative Computing Based on Method of Literatures [3]

Table 13. Iterative computing \hat{a}_0 , \hat{a}_1 , \hat{a}_2 and \hat{a}_3 .

Iterative times	First	Second	Third	Fourth
$\hat{\sigma}_0$	± 0.00640609	± 0.006406885	± 0.006406885	± 0.006406885
\hat{a}_0	2.61877099	2.61971445	2.61972163	2.61972169
\hat{a}_1	1.03091098	1.03000236	1.02998864	1.02998853
â2	0.94419441	0.94439666	0.94440431	0.94440437
â3	0.58970185	0.58970223	0.58970094	0.58970094

 Table 14. Iterative computing variances and covariance.

Iterative times	Matrix of variances and covariance of $\hat{a}_0, \hat{a}_1, \hat{a}_2$ and \hat{a}_3			
first	0.001725	-0.003180	0.001738	-0.000288
	-0.003181	0.006195	-0.003497	0.000593
	0.001738	-0.003497	0.002018	-0.000348
	-0.000288	0.000593	-0.000348	0.000061
second	0.001651	-0.003069	0.001683	-0.000280
	-0.003069	0.006029	-0.003416	0.000580
	0.001683	-0.003416	0.001979	-0.000341
	-0.000280	0.000580	-0.000341	0.000060

The authors confirm that this article content has no con-

E. H. Wei, Z. X, Yin, G. W. Li, and Z. Q. Li, "On 3D coordinate

transformations with virtual observation method," Geomatics and

Information Science of Wuhan University, vol. 39, no. 2, pp. 152-

Y. B. Yao, and J. Kong, "A new combined Is method considering random errors of design matrix," *Geomatics and Information Sci*-

Y.H. Deng, "Improved total least square algorithm", The Open

Teaching and Research Group of Surveying Adjustment, Error Theory and Fundation of Surveying Adjustment 2nd ed., School of

Geodesy and Geomatics of Wuhan University, CA: Wuhan, pp.

ence of Wuhan University, vol. 39, no. 9, pp. 1028-1032, 2014.

Civil Engineering Journal, vol. 9, pp. 394-399, 2015.

Iterative times	Matrix of variances and covariance of \hat{a}_0 , \hat{a}_1 , \hat{a}_2 and \hat{a}_3			
third	0.001650	-0.003068	0.001683	-0.000280
	-0.003068	0.006026	-0.003414	0.000580
	0.001683	-0.003414	0.001978	-0.000341
	-0.000280	0.000580	-0.000341	0.000060
fourth	0.001650	-0.003068	0.001683	-0.000280
	-0.003068	0.006026	-0.003414	0.000580
	0.001683	-0.003414	0.001978	-0.000341
	-0.000280	0.000580	-0.000341	0.000060

CONFLICT OF INTEREST

ACKNOWLEDGEMENTS

Declared none.

156, 2014.

106-128, 2003.

REFERENCES

[1]

[2]

[3]

[4]

flict of interest.

4.4. Results of Comparison Analysis

From Table 9, Table 10, Table 11, Table 12, Table 13, and Table 14 of second imitative example, we can obtain same results as that of first imitative example.

CONCLUSION

The new method of this paper is more strict in theory, because it thinks elements of designing matrix may have condition equations, and selects essential unknown parameters to express all virtual observation values among designing matrix.

The new method of this paper is another improved method which isn't the same as the method of literature [3], and has been deduced. So, this paper perfected and enriched total least square algorithm in theoretics.

Two examples showed that new mothod of this paper is viable and valid, and still supported and perfected literature [3] in practice.

Received: April 12, 2015

Revised: April 21, 2015

Accepted: August 10, 2015

© Deng Yonghe; Licensee Bentham Open.

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, noncommercial use, distribution and reproduction in any medium, provided the work is properly cited.