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Abstract:

Aims:

A  new  hybrid  procedure  that  combines  the  Vlasov  torsion  theory  with  the  Bernoulli  bending  theory  is  presented  herein,  to  demonstrate
qualitatively and quantitatively the operation of asymmetric folded plates with parallel edges, which are loaded with gravity static loads.

Background:

A recently proposed technique based on Vlasov torsion theory is used for the exact calculation of the Principal Elastic Reference System in a
reinforced concrete folded plate having an asymmetric thin-walled open cross-section with parallel edges. Moreover, the warping moment (or bi-
moment)  concept  of  the  Vlasov  theory  is  combined  with  the  pure-bending  around  two  axes,  according  to  the  Bernoulli  bending  theory,  to
determine the normal stresses along the longitudinal dimension of the folded plate.

Methods:

Τhe warping properties of a thin-walled open cross-section are determined by calculating: (a) the elastic characteristics (elastic center, principal
axes) of the section, (b) the principal start point, the sectorial coordinates, the wrapping moment of inertia and the wrapping stiffness of the section.
Finally, the normal stresses along the longitudinal dimension are calculated considering the bi-axes flexure with the bi-moment phenomenon.

Results:

Τhe exact solution of normal stresses at the middle section of an examined folded plate along the longitudinal dimension is found by combining the
Bernoulli bending theory for prismatic beams and the Vlasov torsion theory for thin-walled open sections.

Conclusion:

The current procedure can be used as a benchmark analysis method of asymmetric folded plates in order to evaluate the reliability of the results of
various analysis F.E.M. software, covering an open issue of the structural analysis of special structures.

Keywords: Folded plate, Principal elastic reference system, Principal start point, Vlasov torsion theory, Sectorial coordinates, Warping moment of
inertia.
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1. INTRODUCTION

A structural member with a thin-walled open cross-section
is often used as a core in multi-story reinforced concrete (RC)
buildings  or  as  a  roof  in  folded  plate  RC  structures.  In  the
general case, this cross-section is asymmetric, having strongly
spatial  behavior  that  significantly  affects  the  torsional-
translational behavior of the structure. Examples of the use of
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open cross sections are folded plates loaded with gravity loads
that are used as roofs, especially in structures with large spans,
as well  as vertical cores that are usually used in buildings to
carry lateral loads (such as seismic or wind loads). The elastic
center  of  the  asymmetric  cross-section  is  generally  located
away  from  its  geometric  center  and  this  distance  is  called
“cross  sectional  eccentricity”.  Due  to  the  existence  of  the
partial  legs  of  the  thin  wall  cross-section,  the  thin-wall  open
cross-section  presents  important  translational  stiffness  and
significant  resistance  in  bend-from-torsion  (phenomenon  of
torsion-warping).
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A folded plate consists of -plane surface disks that are not
the same, which are connected, as shown in (Fig. 1). This is a
prismatic surface structure in which each-one disk operates in a
mixed  way  since  it  is  loaded  into  its  plane  and,  also
perpendicular on its surface. In addition, it is common to set an
end-diaphragm  at  each  end  of  a  folded  plate.  The  distance
between the two end-diaphragms is the longitudinal dimension
L of the folded plate, while the width is the b-dimension, and
the height is the H-dimension (Fig. 1). Folded plates are used
for the cover of large areas. The exact analysis procedure of the
folded plates according to the theory of elasticity is particularly
hard,  harder  than  the  analysis  procedures  of  shell  structures,
while  for  many  types  of  folded  plates  (especially  when  they
have  non-parallel  edges),  the  unique  solution  comes  from
experimental results [1, 2]. The numerical solutions using the
finite element method are easy, but the issue of checking the
reliability  of  the  numerical  results  remains  a  major  problem,
especially at such special structures. On the other hand, special
finite  elements  have  been  proposed  for  a  better  numerical
analysis, where a higher order mixed-based Bernoulli element
(HMB) used with very good results in symmetric thin-walled
open  cross-sections  [3].  However,  in  non-symmetric  thin-
walled open cross-sections, the question point remains. For this
reason, the comeback to approximate methodologies of the past
is a convenient way. The first approximate methodologies were
presented for the first time in 1930 by Ehlers [4] and Craemer
[5]. Afterward there were many others as Gruber [6], Gruning

[7], Vlasov [8], Hartenbach [9], Winter and Pei [10], Girkman
[11], Gaafar [12], Aichinger [13], Valentin [14], and Yitzhaki
[15]. All the researchers have used various assumptions.

The  present  article  proposes  a  new  hybrid  procedure,
combining  a  recently  presented  new  technique  [16]  that  is
based  on  the  Vlasov  torsion  theory  [17,  18]  of  thin-walled
prismatic  beams,  with  the  Bernoulli  bending  theory.  The
Vlasov torsion theory has been widely used in the past for the
study of open thin-walled cross-section, since it is the unique
procedure  that  examines  the  torsion-warping  phenomena  of
such structures [19 - 21]. Furthermore, in another recent article,
the Vlasov theory was used in order to define the equivalent
torsional-warping  stiffness  of  thin-walled  open  cross-section
[22].

In more detail, the following subjects are determined: (a)
the location of the elastic center (or stiffness center) as well the
center  of  gravity,  (b)  the  cross-sectional  eccentricity  of
members of the folded plate, (c) the orientation of the principal
elastic  axes  of  the  cross-section,  (d)  the  position  of  the
principal start point of the cross-section, (e) the exact diagram
of the sectorial coordinates of the cross-section, (f) the warping
moment of inertia of the cross-section and, last but not least,
(g) the normal stresses on the cross-section of the folded plate
due  to  bi-moment  (this  is  the  first  source  of  the  normal
stresses). Afterwards, we use the Bernoulli bending theory to
determine the normal stresses at the critical cross-sections

Fig. (1). A folded plate with parallel edges.
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along  the  longitudinal  direction  of  a  folded  plate  (this  is  the
second source of the normal stresses).  It  is worth that all  the
above-mentioned  properties  explicate  qualitatively  and
quantitatively  the  spatial  behavior  of  the  folded  plate  due  to
gravity  loads  and,  for  this  reason,  can  be  used  to  verify  the
numerical  results  produced  from  various  types  of  the  finite
element  method.  The  present  procedure  is  very  simple  in
practice,  giving  exact  results  (which  are  based  on  closed
mathematical  relationships),  which  come  from  the  double-
bending  around  the  two  perpendicular  axes  and  the  warping
phenomenon  of  the  thin-walled  open  cross-section  of  the
folded  plate.  On  the  contrary,  is  well-known  that  in  such
structures, the finite element method gives approximate results,
because  the  torsion-warping  phenomenon  is  ignored  by  this
method. Hence, the main advantage of the present procedure is
that  it  is  directly  based  on  the  superposition  of  Bernoulli
bending theory and Vlasov torsion theory (i.e. solving closed
mathematical  relations  derived  from  differential  equation
solutions), while on the one hand, the finite element method is
approximate  and  on  the  other  hand  the  abovementioned
classical  approximate  methodologies  [4  -  15]  use  many
additional assumptions. The present procedure is based on the
findings  of  a  recently  developed  technique  [16]  for  the
calculation of the elastic characteristics of the thin-walled open
cross-section  structures  (elastic  center  of  the  open  cross-
section, principal axes of the open cross-section, principal start
point  of  the  open  cross-section,  sectorial  coordinates  of  the
cross-section  and  wrapping  moment  of  inertia  of  the  open
cross-section).

2. METHODOLOGY

An  easy  procedure  based  on  a  recently  developed
technique  [16],  which  examines  the  torsion-warping
phenomenon  of  cores  or  of  other  thin-walled  open  cross-
section structures, is presented in this article. The main steps of
the proposed procedure are given below:

a)  A  temporary  Cartesian  three-orthogonal  reference
system  OXYZ  is  used  for  the  determination  of  the  gravity
center, G, as well as for the orientation of the principal axes ξ
and η of the thin-walled open cross-section.

b) Calculation of the principal moments of inertia Iξ and Iη

of the thin-walled open cross-section about the principal axes ξ
and η passing through the gravity center G of the cross-section.

c) Calculation of diagrams of coordinate-functions ξ(s) and
η(S) of the thin-walled open section with regard to the gravity
reference system Gξηz.

d)  Determination  of  the  location  of  the  elastic  center  K
(which is the stiffness center) of the thin-walled open section
using a repetitive mathematical procedure.

e) Determination of the location of the principal start point
MO(xO,  yO)  of  the  thin-walled  open  section  as  well  as  of  the
sectorial coordinates ω(s) with respect to the pole K (that is, the
Elastic Center of the cross-section) and based on the principal
start point M 0 of the thin-walled open cross-section.

f)  Determination  of  the  numerical  value  of  the  warping
moment  of  inertia  (or  warping  constant  according  to  other

researchers,  Iω,  of  the  thin-walled  open section,  according to
Vlasov torsion theory.

g)  The  Bernoulli  bending  theory  is  applied,  and  for  this
reason,  all  loadings  have  to  be  moved  to  the  Principal
Reference System K(I,II,III) of the cross-section. Hence, there
are two planes (I,III) and (II,III) of pure bending and a warping
effect around the III-axis.

h) Calculation of the normal stresses on the critical cross-
sections of the folded plate using the Vlasov torsion theory in
combination with the Bernoulli bending theory.

It  is  noted  that  the  theory  of  Bending  from  the  Torsion
(torsion-warping  effect)  of  a  structural  member  with  a  thin-
walled  open  section,  which  was  developed  by  V.  Vlasov
(1959),  uses  the  following  assumptions:

i.  The  cross-sections  of  the  structural  element  remain
undeformed into their planes (disk behavior). This is the well-
known Bernoulli assumption (or Bernoulli-Navier assumption)
from the Technical Theory of Beam Bending.

ii.  The  shear  deformations  of  the  considered  structural
member  are  assumed  to  be  zero  (Bernoulli  assumption).

iii.  The perpendicular lines that belong at  the disk of the
thin-walled  open  section  remain  also  perpendicular  at  the
deformed state. This is the Kirchhoff's assumption in the study
of thin plates.

According to [16], if the displacements  of the
point  P  are  known,  then  the  displacements  us,  un,  uz  of  the
random point M on the mean line of a thin-walled open cross-
section, in the local coordinate system Μsnz (Fig. 2):

(1)

(2)

(3)

where:

 are the degrees of freedom in the plane XOY  O of
the solid disk of the open section at the start point P.

us, un, uz are the displacements of point M along the local s,
n and z-axis.

^α is the angle of the local s axis with the X  0 axis of the
global coordinate system PX 0Y 0Z 0, which is a function of the
dimension s.

Sm,  Nm  are  the  coordinates  of  point  M  in  the  global
coordinate system PSNZ, which are functions of the dimension
s.

 are  the  angles  of  the  open

cross-section about  the horizontal  axes x  and y,  respectively.
These angles are functions of the dimension z.

 gives the change of the θz per unit length

along Z-axis. This change is called twist and it constitutes the
seventh degree of freedom, instead of the six known degrees of
freedom of a common joint of a spatial structure.

𝑢𝑠 = 𝑢𝑥
𝑜 ∙ cos 𝛼 + 𝑢𝑦

𝑜 ∙ sin 𝛼 − 𝑁𝑚 ∙ 𝜃Z     

𝑢𝑛 = −𝑢𝑥
𝑜 ∙ sin 𝛼 + 𝑢𝑦

𝑜 ∙ cos 𝛼 + 𝑆𝑚 ∙ 𝜃Z   

𝑢𝑧(𝑠) = −𝜃𝑦(𝑧) ∙ 𝑥(𝑠) + 𝜃𝑥(𝑧) ∙ 𝑦(𝑠) − 𝜃′
Z(𝑧) ∙ 𝜔(𝑠) + 𝑢𝑧(0)     

 𝑢𝑥
𝑜, 𝑢𝑦

𝑜 , 𝜃𝑧 

𝑢𝑥
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𝑜 , 𝜃𝑧 

𝜃𝑥(𝑧) =
𝜕 𝑢𝑥

𝑜(𝑧)

𝜕𝑧
, 𝜃𝑦(𝑧) =

𝜕 𝑢𝑦
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𝜕𝑧
 

 𝜃′Z(𝑧) =
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𝜕𝑧
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Fig. (2). The displacement of the cross-section is equivalent to the displacement of the disc with a common rotation about the Z axis for all points of
the cross-section.

Fig. (3). The natural meaning of the sectorial coordinate. The sectorial coordinate dω(s) has a negative sign in this figure.

 is  the  function  of
the  Sectorial  Area  or  Sectorial  Coordinate,  of  the  point  M

(«function  of  warping»  or  «measurement  of  warping»),  Fig.
(3).  The  parameter  dω(s)  is  equal  to  the  double  area  that  is

𝜔(𝑠) = ∫ 𝑁𝑚(𝑠) ∙ 𝑑𝑠
𝑠

0
= ∫ 𝑑𝜔(𝑠)

𝑠

0
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formed from the moving radius PM, where point M is shifted
along the infinitesimal element on the mean line of the open
section-leg.  This  area  is  considered  positive  when  PM  is
rotated about Z-axis according to the rule of clockwised-screw
(Cartesian  System).  The  graphical  display  of  the  sectorial
coordinate defines the distribution of the normal stresses on the
open cross-section in the case of external bi-moment loading of
the section, which is restrained against free torsion.

Eq. (3) yields that if a core with a thin-walled open cross-
section is purely loaded with a torque about Z-axis, causing a
unit twist of the section, i.e.

then  axial  displacements  are  produced,  which  are
numerically equal to the distribution of the sectorial coordinate
ω(s):

(4)

By  using  the  constitutive  law  of  the  material  from  the
theory of elasticity, it is proved that the normal stresses acting
on the cross-section are determined by:

(5)

When the gravity principal directions ξ and η of the cross-
section are rotated with respect to the gravity reference system
Gxyz, Eq. (5) becomes:

(6)

where Iξ and Iη are the principal moments of inertia of the
thin-walled  open  section  about  the  principal  axes  ξ  and  η
passing  through  the  center  of  gravity  G  of  the  cross-section
(local  reference  system Gξηz).  The  normal  stresses  resulting
from the axial loading (1st term of Eq. 6) are superimposed and,
also  the  normal  stresses  developed  in  the  thin-walled  open
section due to bi-moment are superimposed (4th term of Eq. 6).
It is noted that the positive sign in Eqs. (5-6) represents tensile
stresses,  while  the  negative  sign  represents  compressive
stresses on the cross-section. The sign of bending moments is
taken positively when the moment vectors have the same sign
with the positive semi-axis of the Cartesian reference system
Gξηz.

In Eqs. (5-6), the meaning of the symbols is as follows:

ξ(s) and η(s) are functions of the cross-section coordinates
in the local reference system Gξηz.

N(z)  is  the  axial  force  (along  the  Z-axis)  of  the  open
section  with  area  A  and  Modulus  of  Elasticity  E:

(7)

Mx(z)  and  My(z)  are  the  bending  moments  on  the  cross-
section  about  the  x  and  y-axis  at  the  z  level,  according  to
Bernoulli's technical bending theory for prismatic beams. The
quantity Iy represents the moment of inertia of the cross-section
about the y-axis passing through the center of gravity G of the

thin-walled open section, so that both the product second and
first moments of area are zero:

(8)

(9)

Mξ(z)  and  Mη(z)  are  the  bending  moments  acting  on  the
thin-walled  open  section  about  the  principal  axes  ξ  and  η,
respectively,  passing  through  the  center  of  gravity  G  of  the
cross-section.

BK(z) is the bi-moment (or warping moment) at the z-level
acting on the open cross-section.

Iω represents the warping or sectorial moment of inertia of
the open cross-section with unit  of  length to the sixth power
(m6).  To  calculate  the  torsional  moment  of  inertia  Iω,  the
following  two  conditions  must  always  be  met:

(i) Iω is calculated with respect to the Main Pole P of the
cross-section,  which  coincides  with  the  elastic  center  K  (or
stiffness center) of the thin-walled open cross-section and,

(ii) The principal start point MO(xO, yO) of the cross-section
must always be used.

As long as these two cross-section conditions are satisfied,
the  torsional  moment  of  inertia  Iω  becomes  numerically
minimal because both the product sectorial moments Ix,ω, Iy,ω (or
Iξ,ω, Iη,ω depending on the reference system we are working in)
as well as the sectorial first order moment of inertia Sω of the
open cross-section become equal to zero:

(10)

where:

(11)

To determine the location of the elastic center K (or center
of  stiffness)  of  the  thin-walled  open  section,  the  following
repeated procedure is proposed:

2.1. First Approximation

The  goal  to  be  achieved  here  is  the  product  sectorial
moments Iξ,ω and Iη,ω to be equal to zero. Having this goal, the
equations for the calculation of the coordinates δξ and δη of the
center of stiffness K(1) referring to pole P are:

(12)

(13)

𝜃𝑥(𝑧) = 0, 𝜃𝑦(𝑧) = 0,         𝑢𝑧(0) = 0,      𝜃′Z(𝑧) = 1 

𝑢𝑧(𝑠) = 𝜃′Z(𝑧) ∙ 𝜔(𝑠) =  𝜔(𝑠)     

𝜎𝑧(𝑧, 𝑠) =
𝑁(𝑧)

𝐴
− 𝑥(𝑠) ∙

𝑀𝑦(𝑧)

𝐼𝑦
 + 𝑦(𝑠) ∙

𝑀𝑥(𝑧)

𝐼𝑥
− 𝜔(𝑠) ∙

𝐵𝐾(𝑧)

𝐼𝜔
     

𝜎𝑧(𝑧, 𝑠) =
𝑁(𝑧)

𝐴
− 𝜉(𝑠) ∙

𝑀𝜂(𝑧)

𝐼𝜂
 + 𝜂(𝑠) ∙

𝑀𝜉(𝑧)

𝐼𝜉
− 𝜔(𝑠) ∙

𝐵𝐾(𝑧)

𝐼𝜔
    

𝑁(𝑧) = 𝛦 ∙ 𝛢 ∙ 𝑢′
𝑧(𝑧)   

𝑀𝑦(𝑧) = 𝛦 ∙ 𝐼𝑦 ∙ 𝑢′′
𝑥(𝑧)     

𝑀𝑥(𝑧) = −𝛦 ∙ 𝐼𝑥 ∙ 𝑢′′
𝑦(𝑧)  

𝐵𝐾(𝑧) = 𝛦 ∙ 𝐼𝜔 ∙ 𝜃′′
𝑧(𝑧)     

𝛿𝜉
(1) =

𝛪𝜉,𝜔

𝛪𝜉
=

1

𝛪𝜉
∙ ∫𝜂(𝑠) ∙ 𝜔(𝑠) ∙ 𝑒(𝑠) 𝑑𝑠

𝐶

         

𝛿𝜂
(1) = −

𝛪𝜂,𝜔

𝛪𝜂
= −

1

𝛪𝜂
∙ ∫𝜉(𝑠) ∙ 𝜔(𝑠) ∙ 𝑒(𝑠) 𝑑𝑠

𝐶
    

𝐼𝑥,𝜔 = ∫ 𝜔(𝑠) 𝑦(𝑠) 𝑑𝐴
𝐴

0

,     

 𝐼𝑦,𝜔 = ∫ 𝜔(𝑠) 𝑥(𝑠) 𝑑𝐴
𝐴

0

,      

   𝐼𝜔 = ∫ 𝜔(𝑠)2 𝑑𝐴
𝐴

0
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where  the  exponent  (1)  shows the  first  approximation of
the location of the elastic center K, ω(S) is the diagram of the
sectorial areas of the cross-section referring to the temporary
start  point  M,  e(S)  is  the  variable  width  of  the  core-leg  as  a
function  of  the  dimension  s  and  ξ(S),  η(S)  are  the  known
functions  of  coordinates  in  the  local  reference  system  Gξηz.
During the first approximation, the product sectorial moments
Iξ,ω and Iη,ω will not be zero (as they should be since they are
calculated with reference to the real elastic center of the thin-
walled open section), and therefore a second approximation is
required.

Second Approximation: the point K(1) is considered now as
the pole P while the same temporary start point M of the cross-
section  is  used,  and  all  calculations  are  repeated.  The  new
corrected coordinates δξ

(2) and δη
(2) with respect to point K(1) are

determined from Eqs. (12 and 13) and therefore, the corrected
location  of  the  elastic  center  is  called  K(2).  If  the  deviation
between the location of the elastic center of the cross-section
into  the  last  two  approximations  is  not  small  and  hence
unaccepted,  then  we  continue  to  a  third  approximation.  To
achieve  convergence  using  this  repeating  procedure,  the
minimum number of required iterations is two or three, at least.

It is noted that since the functions x(s), y(s),η(S), ξ(S) and
ω(S)  present  a  linear  variation  along  the  straight  legs  of  the
mean line of the thin-walled open section, for the calculation of
the  above  integrals  some  tabled  formulas  (integral  of
multiplication of  two trapezoid  diagrams)  can be  applied  for
each  straight-line  leg.  For  example,  suppose  that  for  a
rectangular leg of length L and constant thickness e(x) = e, we
have two linear, first degree, functions with respect to x,  f(x)
and  g(x).  Then  for  this  special  case,  and  to  avoid  analytical
operations, the integral is given by the following relation:

(14)

where the symbols α, b, c and d are depicted in Fig. (4):

In the case that the external action on a structural member
is  a  torsional  moment  loading  (either  distributed  or
concentrated),  the  numerical  calculation  of  the  bi-moment
diagram, or warping moment denoted by BK and measured in
kN•m2,  is  done  in  a  way  completely  analogous  to  the
corresponding numerical calculation of the bending moment if
instead  of  a  loading  of  torsional  moments  we  had  a
corresponding loading of  forces  (distributed or  concentrated,
respectively).

3. RESULTS AND DISCUSSION

3.1.  Determination of the Principal Elastic System and of
the Main Principle MO(xO, yO) of an open thin-walled section

As  a  pilot  numerical  example,  a  thin-walled  open  cross-
section  will  be  examined  in  order  to  determine  its  principal
reference  system  K(I,II,III)  and  the  diagram  of  its  sectorial
coordinates through which the warping or sectorial moment of
inertia Iω is finally calculated. The geometry of the thin-walled
open section with constant width t = 0.20 m is shown in Fig.
(5).  It  is  noted  that  this  asymmetric  section  can  be  found  in
folded plate structures. The cross-section in question has a thin-
walled  open  form.  Furthermore,  we  ideally  divide  the  thin-
walled open cross-section into four individual (not-rectangular)
sections  (1,  2,  3,  4),  determine  the  center  of  gravity  of  each
individual section (which is not analytically shown here, Fig.
6) and make the necessary calculations that are summarized in
Table  1.  Moreover,  we  can  take  an  arbitrary  temporary
Cartesian  3D  reference  system  OXYZ  (Fig.  7)  and
geometrically  draw  the  mean  line  of  the  thin-walled  open
cross-section. Next, we will calculate the center of gravity G as
well as the principal directions ξ and η of the cross-section.

Fig. (4). Explanation of symbols α, b, c and d, for the application of Eq. (14).

Table 1. Calculations for the location of the center of gravity G of the thin-walled open section (OXYZ).

Leg i Ai (m
2) Xi (m) Yi (m) Xi·Ai (m

3) Yi·Ai (m
3) XG (m) YG (m)

[1] 0.2056 0.997 1.385 0.2051 0.2848 2.935 2.367
[2] 0.6147 2.300 2.039 1.4139 1.2535 - -

∫ 𝑓(𝑥) ∙ 𝑔(𝑥) ∙ 𝑒(𝑥) 𝑑𝑥
𝐿

0

= 𝑒 ∙
𝐿

6
∙ [𝑎(2𝑐 + 𝑑) + 𝑏(𝑐 + 2𝑑)]   

𝑓(𝑥) = 𝑎 +
𝑥 ∙ (𝑏 − 𝑎)

𝐿
,            𝑔(𝑥) = 𝑐 +

𝑥 ∙ (𝑑 − 𝑐)

𝐿
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Leg i Ai (m
2) Xi (m) Yi (m) Xi·Ai (m

3) Yi·Ai (m
3) XG (m) YG (m)

[3] 0.2952 4.200 3.234 1.2395 0.9547 - -
[4] 0.2011 5.001 3.103 1.0056 0.6239 - -

Sum 1.3166 - - 3.8641 3.1169 - -

Fig. (5). Geometry of the opened thin-walled section (lengths in meters).

Fig. (6). Division of the thin-walled open cross-section into four individual (not-rectangular) sections. The center of gravity of each section is shown.

(Table 1) contd.....
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Fig. (7). Position of the center of gravity G of the open thin-walled section and its principal directions ξ and η.

The coordinates (XG, YG) of the Center of Gravity G of the
thin-walled open section with regard to the temporary reference
system OXYZ, are:

(15)

(16)

We also consider the temporary Cartesian reference system
Gxyz, (Fig. 7).

Then, we use Table 2 in order to calculate the moments of
inertia  of  the  open  thin-walled  cross-section  relative  to  the
Gxyz  system. In the first two columns the coordinates x,  y  of
the center of gravity of each individual leg i with respect to the
center of gravity G of the cross-section are given. In column Ixi,
the moment of inertia of each individual leg i with respect to
the local axis parallel to x-axis, which passes through the center
of gravity of the considered leg, is given. Correspondingly, in
column Iyi, the moment of inertia of each individual leg i with
respect to the local axis parallel to y-axis, that passes through
the center of gravity of the considered leg, is given. Also, in
column Ixyi, the moment of inertia of each individual leg i with
respect  to  the  local  axes  parallel  to  x  and  y  axes,  that  pass
through the center of gravity of the considered leg, is given. It
is  noted  that  the  analytical  calculations  of  these  moments  of
inertia of each individual leg i are not shown here. In the next
column Ixx, the moment of inertia of each leg i about the x-axis
is  calculated  with  respect  to  the  center  of  gravity  G  of  the
cross-section (i.e. Ixi is increased according to the Steiner term,
which is equal to the area Ai (Table 1) times the square of the

distance to the x-axis,  in other words Ai(Yi-YG)2.  Similarly, in
the next column Iyy, the moment of inertia of each leg i about
the y-axis is calculated with respect to the center of gravity G
of  the  cross-section  (i.e.  Iyi  is  increased  by  the  Steiner  term,
which is equal to the area Ai times the square of the distance to
the y-axis, Ai(Xi-XG)2. Finally, in the last column Ixy, the product
moment of inertia is placed (i.e. Ixyi is increased by the Steiner
term, which is equal for each leg i to the product of the area Ai

with (Xi-XG)•(Yi-YG) .

The  total  moments  of  inertia  of  the  thin-walled  open
section  are  given  by:

(17)

(18)

(19)

Additionally,  we  will  calculate  the  orientation  of  the
principal directions (ξ and η) of inertia of the thin-walled open
cross-section determined by the angle ωO, regarding the Gxyz
system:

(20)

𝑋𝐺 =
∑ 𝑋𝑖 ∙ 𝐴𝑖

∑ 𝐴𝑖
=

3.8641

1.3166
= 2.935 m            

𝑌𝐺 =
∑ 𝑌𝑖 ∙ 𝐴𝑖

∑ 𝐴𝑖
=

3.1169

1.3166
= 2.367 m    

𝛪𝑥𝑥 = ∫ 𝑦2𝑑𝐴
𝑑𝐴

= ∑ 𝐼𝑥𝑖 + 𝐴𝑖 ∙ (𝑌𝑖 − 𝑌𝐺)2 
𝑖

       

𝛪𝑦𝑦 = ∫ 𝑥2𝑑𝐴
𝑑𝐴

= ∑ 𝐼𝑦𝑖 + 𝐴𝑖 ∙ (𝑋𝑖 − 𝑋𝐺)2 
𝑖

 

𝛪𝑥𝑦 = ∫ 𝑥 ∙ 𝑦 ∙ 𝑑𝐴
𝑑𝐴

= ∑ 𝐼𝑥𝑦𝑖 + 𝐴𝑖 ∙ (𝑋𝑖 − 𝑋𝐺) ∙ (𝑌𝑖 − 𝑌𝐺) 
𝑖

   

tan(2𝜔𝜊) =
2 𝛪𝑥𝑦

𝐼𝑦𝑦 − 𝐼𝑥𝑥
=

2 ∙ (1.4005)

2.6951 − 0.8282

= 1.5003  ⇒   𝜔𝜊 = 0.49144 rad  

or  𝜔𝜊 = 28.158 𝜊 
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Table 2. Moments of inertia of the open thin-walled section (Gxyz).

Leg i
Xi-XG (m) of

Center of
Gravity of Leg

Yi-YG (m) of
Center

of Gravity of
Leg

Ix,i (m
4) Iy,i (m

4) Ιxy,i (m
4) Ixx (m

4) Iyy (m
4) Ixy (m

4)

[1] -1.938 -0.983 0.01833 0.00068 0.00027 0.2168 0.7727 0.3917
[2] -0.635 -0.328 0.19133 0.29530 0.23560 0.2576 0.5431 0.3637
[3] 1.265 0.867 0.00629 0.04832 0.01586 0.2281 0.5203 0.3395
[4] 2.066 0.735 0.01698 0.00067 0.00011 0.1257 0.8590 0.3056

Sum - - - - 0.25184 0.8282 2.6951 1.4005

Then,  the  principal  moments  of  inertia  (Iξ  and  Iη)  of  the
thin-walled open cross-section about the principal axes ξ and η
with  origin  the  center  of  gravity  G  of  the  cross-section  are
calculated, as follows (Table 2):

(21)

(22)

The coordinate diagrams ξ(s), η(s) of the thin-walled open
cross-section  at  the  Gξηz  system  are  obtained  either
geometrically,  or  analytically  using  the  rotation  matrix:

(23)

As an example,  point  B  has  the  following coordinates  at
the Gxyz system:

The coordinates  of  point  B  at  the  Gξηz  system,  which  is
rotated by  relative to the x-axis, are given below.
Fig. (8) shows the coordinate diagrams ξ(s), η(s).

(24)

Next, the location of the elastic center K of the thin-walled
open  cross-section  will  be  calculated.  For  this  purpose,  an
iterative process is followed (usually at least two iterative steps
are required to achieve convergence), which in the end always
converges to the same point, which is the elastic center K of the
open cross-section. The number of iterations depends on one
hand  on  the  choice  of  the  arbitrary  pole  P  that  will  be
considered  during  the  first  approximation,  and  on  the  other
hand  on  the  position  of  the  temporary  start  point  M  of  the
cross-section that is also chosen arbitrarily and remains fixed
until the elastic center K is determined. Usually, to achieve a
faster convergence of the iterative process in order to locate the
elastic center K, we choose - in the first approximation the pole
P  to coincide with the geometric center G  of  the thin-walled

open cross-section, while we must work at the Gξηz system.

3.2.  Determination  of  the  Elastic  Center  K(1)  in  1st

Approximation

The  elastic  center  K  of  the  cross-section  presents  an
eccentricity with respect to the pole P  (which coincides with
the  center  of  gravity  G  of  the  same  cross-section  at  the  first
approximation).  This  eccentricity  is  determined  by  the
coordinates  δξ  and  δη  with  respect  to  G  along  the  principal
directions ξ and η, which are calculated from Εqs. (12 and 13),
which are repeated below:

where e(s) is the constant thickness of the section, ω(S)(1) is
the diagram of the sectorial coordinates (sectorial area) of the
cross-section with respect to the temporary start point M (Fig.
9), while ξ(s) and η(s) are known from the diagrams of Fig. (8).
As regards the temporary start point M of the cross-section, it is
recommended that some corner of the thin-walled cross-section
can be chosen that is approximately in the middle of the mean
line length of the cross-section, while the location of this start
point  M  must  be  kept  fixed  for  all  the  iterations  to  be
performed. The location of the principal start point MO of the
thin-walled  open  section  will  be  calculated  at  the  end,  after
finalizing the location of the elastic center K. In Tables 3 and 4,
the calculations for finding the product warping moments Iη,ω

and Iξ,ω are shown. The symbols a, b, c, d are used to apply Eq.
(14).  It  is  also  emphasized  here  that  the  values  of  the  two
product  warping moments (Iξ,ω,  Iη,ω)  are becoming zero when
these are calculated with respect to the real elastic center K of
the thin-walled open cross-section.

Therefore, using Eqs. (12 and 13) in a first approximation,
the location of the elastic center K(1) with respect to the pole P
(which here coincides with the center of gravity G) is (Fig. 9):

𝐑 = [
cos 𝜔𝜊 sin 𝜔𝜊

− sin 𝜔𝜊 cos 𝜔𝜊
] = [

0.88165 0.47190
−0.47190 0.88165

]    

𝐵(𝑥, 𝑦) = (−1.935, −1.367) 

𝛪𝜉 =
𝛪𝑥𝑥 + 𝐼𝑦𝑦

2
+

(𝛪𝑥𝑥 − 𝐼𝑦𝑦)

2
∙ cos(2𝜔𝜊)

− 𝐼𝑥𝑦 ∙ sin(2𝜔𝜊) = 0.0786 m4    

𝛪𝜂 =
𝛪𝑥𝑥 + 𝐼𝑦𝑦

2
−

(𝛪𝑥𝑥 − 𝐼𝑦𝑦)

2
∙ cos(2𝜔𝜊)

+ 𝐼𝑥𝑦 ∙ sin(2𝜔𝜊) = 3.4447 m4    

𝐵 = {
𝜉
𝜂

} = [
cos 𝜔𝜊 sin 𝜔𝜊

− sin 𝜔𝜊 cos 𝜔𝜊
] {

𝑥
𝑦}      ⇒                            

𝐵 = {
𝜉
𝜂

} = [
0.88165 0.4719
−0.4719 0.88165

] {
−1.935
−1.367

} = {
−2.351
−0.292

} 

𝛿𝜉 =
𝛪𝜉,𝜔

𝛪𝜉
=

1

𝛪𝜉
∙ ∫𝜂(𝑠) ∙ 𝜔(𝑠) ∙ 𝑒(𝑠) 𝑑𝑠

𝐶

 

𝛿𝜂 = −
𝛪𝜂,𝜔

𝛪𝜂
= −

1

𝛪𝜂
∙ ∫𝜉(𝑠) ∙ 𝜔(𝑠) ∙ 𝑒(𝑠) 𝑑𝑠

𝐶

 

𝛿𝜉
(1)

=
𝛪𝜉,𝜔

𝛪𝜉
=

0.0739

0.07860
= 0.940 m 

𝛿𝜂
(1)

= −
𝛪𝜂,𝜔

𝛪𝜂
= −

−0.8353

3.4447
= 0.242  m 
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Fig. (8). (a) Coordinates of the ends of the legs, (b) Coordinate diagrams ξ(s), (c). Coordinate diagrams η(s). All coordinates are relative to the local
Gξηz reference system.

Fig. (9). Sectorial coordinates diagram ω(S)(1) with respect to the pole G and based on the temporary start point M at the corner B. The location of the
elastic center K(1) of the thin-walled open cross-section at the 1st approach.
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Table 3. Product warping moment Iη,ω (1st approximation).

ξ(s) ω(s)
Leg e (m) Li (m) a b c d Iη,ω (m5)
BA 0.2 0.9 -2.351 -1.927 0 -1.742 0.32427
BC 0.2 3.202 -2.351 0.797 0 -0.452 0.03652
CD 0.2 1.581 0.797 2.355 -0.452 -1.118 -0.41853
DE 0.2 0.9 2.355 1.930 -1.118 -2.976 -0.7776

Sum - - - - - - -0.8353

Table 4. Product warping moment Iξ,ω (1st approximation).

η(s) ω(s)
Leg e Li a b c d Iξ,ω

BA 0.2 0.9 -0.292 0.501 0 -1.742 -0.0371
BC 0.2 3.202 -0.292 0.291 0 -0.452 -0.0140
CD 0.2 1.581 0.291 0.024 -0.452 -1.118 -0.0344
DE 0.2 0.9 0.024 -0.769 -1.118 -2.047 0.1594

Sum - - - - - - 0.0739

Fig. (10). Sectorial coordinates diagram ω(S)(2) with respect to the pole P (which coincides withK(1) and based on the temporary start point M at the
corner B. The location of the elastic center K(2) of the thin-walled open cross-section at the 2nd approach.

3.3.  DEtermination  of  the  Elastic  Center  K(2)  in  2nd

Approximation

In the second approximation, the elastic center K(1) of the
first approximation, which was calculated in the 1st approach, is
used as the pole P, while the same temporary start point M of

the  cross-section  (at  point  B)  is  used.  In  this  second
approximation, the sectorial diagram coordinates ω(S)(2) of the
cross-section  with  respect  to  the  temporary  start  point  M,  is
given in Fig. (10). The calculations for finding the two product
warping moments Iη,ω, Iξ,ω are shown in Tables 5 and 6.

Table 5. Product warping moment Iɳ,ω (2nd approximation).

ξ(s) ω(s)
Leg e (m) Li (m) a b c d Iη,ω (m5)
BA 0.2 0.9 -2.351 -1.927 0 -2.384 0.4438
BC 0.2 3.202 -2.351 0.797 0 -0.238 0.0192
CD 0.2 1.581 0.797 2.355 -0.238 -0.276 -0.1296
DE 0.2 0.9 2.355 1.930 -0.276 -1.492 -0.3332

Sum - - - - - - 0.0002
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Table 6. Product warping moment Iξ,ω (2nd approximation).

η(s) ω(s)
Leg e (m) Li (m) a b c d Iξ,ω (m5)
BA 0.2 0.9 -0.292 0.501 0 -2.384 -0.0508
BC 0.2 3.202 -0.292 0.291 0 -0.238 -0.0074
CD 0.2 1.581 0.291 0.024 -0.238 -0.276 -0.0125
DE 0.2 0.9 0.024 -0.769 -0.276 -1.492 0.0737

Sum - - - - - - 0.0030

Therefore,  using  Eqs.  (12  and  13)  in  a  second
approximation,  the  location  of  the  elastic  center  K(2)  with
respect to the pole P (which here coincides with K(1)) is (Fig.
10):

So, the corrected location of K from the center of gravity G
is (Fig. 10):

(25)

(26)

The accuracy achieved is very satisfactory and therefore no
further  approximation  is  required.  However,  if  a  third
approximation is applied, then the final location of K is given
as δξ

(1+2+3) = 0.98m and δη
(1+2+3) = 0.242m, and this position of the

Elastic Center K is used in the following.

3.4.  Calculation  of  the  Corrected  Sectorial  Coordinate
Diagram with Respect to the Final Location of the Elastic
Center K

The  final  location  of  the  elastic  center  K  has  been
determined.  Using pole K  and with the same temporary start
point  M  of  the  cross-section  already  obtained  at  point  B,  we
correct the diagram of the sectorial coordinates ω(S)(M) of the
cross-section (Fig. 11).

With the final location of the elastic center K known, and
given the temporary start point M of the cross-section, we form
the  ideal  triangle  KMMo,  with  the  point  MO  as  unknown that
must  be  determined.  This  is  achieved  by  calculating  the
unknown  distance  ρ.  The  area  Ar  of  the  triangle  KMMo  is:

(27)

where  υ  is  the  height  of  the  triangle  which  is  known
geometrically  (Fig.  12).

Therefore, the distance ρ is given by:

(28)

Fig. (11). Final sectorial coordinates diagram ω(S) with respect to the pole P (which coincides with K) and based on the temporary start point M at the
corner B.

𝛿𝜉
(2) =

𝛪𝜉,𝜔

𝛪𝜉
=

0.003

0.0786
= 0.038 m 

𝛿𝜂
(2) = −

𝛪𝜂,𝜔

𝛪𝜂
= −

0.0002

3.4447
= 0.000  m 

𝛿𝜉
(1+2)

= 𝛿𝜉
(1)

+ 𝛿𝜉
(2)

= 0.940 + 0.038 = 0.978 m       

  

𝛿𝜂
(1+2)

= 𝛿𝜂
(1)

+ 𝛿𝜂
(2)

= 0.242 + 0. = 0.242  m    
       

 

𝐴𝑟 =
1

2
∙ 𝜌 ∙ 𝜐    

𝜌 =
2𝐴𝑟

𝜐
=

𝛺(𝜌) 

𝜐
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Fig. (12). Calculation of the principal start point MO of the thin-walled open cross-section.

Table 7. Area of the sectorial coordinates ω(s)(M) based on the temporary start point M.

ω(s)
Leg e (m) Li (m) a b
BA 0.20 0.90 0 -2.416 -0.2174
BC 0.20 3.202 0 -0.262 -0.0839
CD 0.20 1.581 -0.262 -0.290 -0.0873
DE 0.20 0.90 -0.290 -1.474 -0.1588

Sum - - - - -0.5474

The  magnitude  2Ar  (i.e.  twice  the  area  of  the  triangle)
represents the sectorial coordinate ω(s) of the triangle KMMo

with the elastic center K as a pole and will be denoted by Ω(ρ)
which is calculated from the following equation:

(29)

where  A  =  1.3165  m2  is  the  total  area  of  the  thin-walled
cross-section  (Τable  1),  ω(S)(M)  is  the  sectorial  coordinates
based on the temporary start point M and υ is the height of the
triangle  KMMo  from  K  (Fig.  12),  where  υ  is  measured
geometrically. The calculations for finding Ω(ρ) are shown in
Table 7, in which the quantity  is calculated.

If  the  quantity  Ω(ρ)  is  negative,  then  the  principal  start
point MO will be located with a negative rotation of the radius
KM of the triangle KMMo (which is the case here).

Therefore, from Eq. (29):

The  height  υ  of  the  triangle  KMMo  is  measured
geometrically as 2.685 m, and consequently the distance ρ  is
calculated from Eq. (28):

Being  known  the  principal  start  point  MO,  the  final
corrected diagram of sectorial coordinates ω(s)  is calculated,
using the elastic center K as the pole (Fig. 13).

Then the value of the warping moment of inertia Iω of the
thin-walled open cross-section is calculated, which will be used
to calculate the positive normal stresses due to the external load
of bi-moment BK for a specific level of the cross-section along
the longitudinal dimension of the thin-walled structure.

The  warping  moment  of  inertia  Iω  (Eq.  11)  of  the  thin-
walled open section is calculated in Table 8 as:

𝑒 ∙ ∫𝜔(𝑠)(𝛭) 𝑑𝑠
𝐶

 

𝛺(𝜌) =
𝑒

𝐴
∙ ∫𝜔(𝑠)(𝛭) 𝑑𝑠

𝐶

𝑒 ∙ ∫ 𝜔(𝑠)(𝛭) 𝑑𝑠
𝐶

 

   𝛺(𝜌) =
1

𝐴
∙ ∫ 𝑒(𝑠) ∙ 𝜔(𝑠)(𝛭) 𝑑𝑠

𝐶
=

−0.5474

1.3166
= −0.4158 

𝜌 =
2𝐴𝑟

𝜐
=

𝛺(𝜌) 

𝜐
=

−0.4158

2.685
= −0.155 m 

𝐼𝜔 = ∫𝜔2 𝑑𝐴
𝐴

= 0.32248 m6 
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Fig. (13). The corrected plot of the sectorial coordinates ω(s) with respect to the pole K and based on the principal start point MO of the thin-walled
open cross-section.

Table 8. Warping Moment of Inertia Iω, using as pole the elastic center K and relative to the principal start point MO.

ω(s) ω(s)
Leg e Li a b c d Iω

BA 0.2 0.9 0.416 -2. 0.416 -2. 0.2008
BC 0.2 3.202 0.416 0.154 0.416 0.154 0.0557
CD 0.2 1.581 0.154 0.126 0.154 0.126 0.0062
DE 0.2 0.9 0.126 -1.058 0.126 -1.058 0.0601

Sum - - - - - - 0.32248

Fig. (14). The location of the Principal Elastic reference System K,I,II,III on the thin-walled open cross-section.
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Fig. (14) shows the elastic principal system (K,I,II,III) of
the thin-walled open cross-section with respect to the original
reference system OXYZ, where the III-axis is the vertical axis
passing through the elastic center K and together with the two
horizontal axes I and II constitute the principal elastic reference
system of the thin-walled open cross-section,  with origin the
elastic center K.

3.5.  Calculation  of  Normal  Stresses  at  the  Middle  Cross-
section of the Folded Plate

We consider the reinforced concrete (R/C) folded plate of
Fig. (1), which has longitudinal dimension L = 20.00 m and is
loaded with two loadings; (a) the self-weight (relative value 25
kN/m3)  and  (b)  the  projected-in-plan  snow-weight  qs  =  4.00
kN/m2. Thus, the consultant forces of the two above-mentioned
loadings are given (Fig. 15):

Next, the forces P1 and P2 are moving to Elastic Center K,
hence,  a  torsional  moment  mt  around  the  horizontal
longitudinal  axis  III  is  the  result:

mt = P1 x 0.75 + P2 x 0.685 = 32.92 x 0.75 + 16.80 x 0.685
= 36.20 kNm/m

’In  addition,  the  consultant  force  F  of  P1  and  P2  at  the
Elastic Center is:

F  =  P1  +  P2  =  32.92  +  16.80  =  49.72  kN/m  along  the
longitudinal direction L.

Furthermore,  the  force  F  is  analyzed  along  the  two
Principal  I  and  II-axes  of  the  thin-walled  open  cross-section
ABCDE (Fig. 15). Along the longitudinal direction, the folded
plate  is  a  prismatic  beam  (having  thin-walled  open  cross-
section) with hinges at both ends. Hence, there are two flexural
moment diagrams at planes (II,III) and (I,III), as well as a bi-
moment  diagram  due  to  torsional  moment  mt  around  the
horizontal  longitudinal  axis  III,  as  are  shown  in  Fig.  (16),
where:

Fig. (15). All gravity loadings are moved to the Principal Elastic System K(I,II,III)

 

𝑃1 = 𝐴 ∙ (
25 kN

m3
) = (1.3166 m2) ∙ (

25 kN

m3
)

= 32.92 kN m along the longitudinal direction 𝐿⁄  

𝑃2 = 𝑞𝑠 ∙ (𝑏 + 0.10 + 0.10) = (4.00) ∙ (4.20)

= 16.80 kN m along the longitudinal direction⁄ 𝐿 

max 𝑀𝜉(𝑧 = 0.5𝐿) =
(𝐹 ∙ cos 𝜔𝜊) × 𝐿2

8

=
(49.72 ∙ cos 28.158𝑜) × 202

8
= 2192.0 kNm 

max 𝑀𝜂(𝑧 = 0.5𝐿) =
(𝐹 ∙ sin 𝜔𝜊) × 𝐿2

8

=
(49.72 ∙ sin 28.158𝑜) × 202

8
= 1173.0 kNm 

max 𝐵𝐾(𝑧 = 0.5𝐿) =
𝑚𝑡 × 𝐿2

8

=
36.20 × 202

8
= 1810.0 kNm3 
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Fig. (16). Diagrams of flexural moments and bi-moments BK along the longitudinal length.

Therefore,  the  normal  stresses  σz(z,s)  of  the  thin-walled
open  cross-section  at  the  middle  section  of  the  longitudinal
length of the folded plate, due to the simultaneous action of the
forces  P1  and  P2  and  their  bi-moments,  can  be  directly
calculated  from  Eq.  (6):

In  this  equation,  the  first  term  is  zero  since  there  is  not
axial loading on the folded plate along the horizontal III-axis
(i.e. N(z) = 0). All the necessary data to use the equation at the
six points from A to E of the cross-section have already been
calculated (ξ(S) and η(S) from Fig. (8), ω(S) from Fig. (13), Iξ =
0.0786m4, Iη = 3.4447m4 and Iω = 0.32248m6), while the normal
σz(0.5L,  S)  diagram at  the  middle  section  of  the  folded  plate
with open thin-walled structure is as shown at Fig. (17). This is
considered as the exact solution because all these come from
the  solving  of  closed  mathematical  relations  derived  from
differential  equations  of  the  abovementioned  “Bernoulli  and
Vlasov” theories.

𝜎𝑧(𝑧, 𝑠) =
𝑁(𝑧)

𝐴
− 𝜉(𝑠) ∙

𝑀𝜂(𝑧)

𝐼𝜂
 

+ 𝜂(𝑠) ∙
𝑀𝜉(𝑧)

𝐼𝜉
− 𝜔(𝑠) ∙

𝐵𝐾(𝑧)

𝐼𝜔
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Fig. (17). Normal stress diagram σz(z, S) (kPa) at the middle section of the folded plate (exact solution).

Point A  of  the cross-section at  the middle section of the
folded plate along the longitudinal dimension (z = 0.5L):

Point  B  of  the cross-section at  the middle  section of  the
folded plate along the longitudinal dimension (z=0.5L):

Point C  of  the cross-section at  the middle section of the
folded plate along the longitudinal dimension (z=0.5L):

Point D  of  the cross-section at  the middle section of the
folded plate along the longitudinal dimension (z=0.5L):

Point  E  of  the cross-section at  the middle  section of  the
folded plate along the longitudinal dimension (z=0.5L):

For comparison reasons, Fig. (18) shows the normal stress
diagram σz(0.5L,s) derived from the F.E.M. analysis software
SAP2000 [23] -using Modulus of Elasticity E = 30 GPa- with
reference to the exact solution that comes from by the proposed
present  methodology.  In  the  same  Figure,  we  can  see  big
differences  where  at  point  E  is  against  safety  (-39.42%).

It is worth noting that the analysis of the folded plate along
the transverse dimension can be achieved as an inclined plate,
with width w = 1.00 m, while we consider simple supports at
the edges (at join of the folds) of the folded plate (Fig. 19).

𝜎𝑧(0.5𝐿, 𝐴) = −𝜉(𝑠) ∙
𝑀𝜂(𝑧 = 0.5𝐿)

𝐼𝜂
 

+ 𝜂(𝑠) ∙
𝑀𝜉(𝑧 = 0.5𝐿)

𝐼𝜉
− 𝜔(𝑠) ∙

𝐵𝐾(𝑧 = 0.5𝐿)

𝐼𝜔
       ⇒ 

𝜎𝑧(0.5𝐿, 𝛢) = −(−1.927) ∙
1173

3.4447
 

+ (0.501) ∙
−2192

0.0786
− (−2. ) ∙

1810

0.32248
     ⇒ 

𝜎𝑧(0.5𝐿, 𝛢) = (656.19)  + (−13971.91)

+ (11225.50) = −2120.22 kN m2⁄  

𝜎𝑧(0.5𝐿, 𝐷) = −(2.355) ∙
1173

3.4447
 

+ (0.024) ∙
−2192

0.0786
− (0.126) ∙

1810

0.32248
     ⇒ 

𝜎𝑧(0.5𝐿, 𝐷) = (−801.93)  + (−669.31)

− (707.21) = −2178.45 kN m2⁄  

𝜎𝑧(0.5𝐿, 𝐸) = −(1.930) ∙
1173

3.4447
 

+ (−0.769) ∙
−2192

0.0786
− (−1.058) ∙

1810

0.32248
     ⇒ 

𝜎𝑧(0.5𝐿, 𝐸) = (−657.21)  + (21445.90)

− (−5938.29) = 26726.98 kN m2⁄  𝜎𝑧(0.5𝐿, 𝐵) = (800.57)  + (8143.31)

− (2334.90) = 6608.98 kN m2⁄  

𝜎𝑧(0.5𝐿, 𝐵) = −(−2.351) ∙
1173

3.4447
 

+ (−0.292) ∙
−2192

0.0786
− (0.416) ∙

1810

0.32248
     ⇒

𝜎𝑧(0.5𝐿, 𝐶) = −(0.797) ∙
1173

3.4447
 

+ (0.291) ∙
−2192

0.0786
− (0.154) ∙

1810

0.32248
     ⇒ 

𝜎𝑧(0.5𝐿, 𝐶) = (−271.40)  + (−8115.42)

− (864.36) = −9251.18 kN m2⁄  
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Fig. (18). Comparison of normal stress diagram σz(z,s) (kPa) by the finite element method at the middle section of the folded plate with reference to
the exact solution by the proposed methodology.

Fig. (19). Bending along the transverse dimension of the folded plate.

CONCLUSION

In  this  paper,  the  exact  determination  of  the  principal
elastic  reference  system  of  an  RC  folded  plate  having  an
asymmetric,  thin-walled  open  section,  and  the  calculation  of
the  warping  constant  of  this  section,  as  well  as  the  normal
stresses  (due  to  self-weight  plus  snow-weight)  along  the
longitudinal  dimension  was  presented.  All  calculations  are
carried out according to a recently modified technique [16] that
examines the warping phenomenon of cores and is based on the
Vlasov torsion theory [17, 18].

In  the  present  article,  the  calculation  of  the  warping
properties of a thin-walled open cross-section is achieved by
applying the following steps: (a) the location of the center of
gravity G and the orientation of the principal axes ξ and η of
the thin-walled open section are determined with respect to a
temporary cartesian reference system OXYZ, (b) the principal
moments  of  inertia  Iξ  and  Iη  of  the  thin-walled  open  section
about the principal axes ξ passing through the gravity center G
of  the  cross-section  are  calculated,  (c)  the  diagrams  of  the
coordinate-functions  ξ(S)  and  η(S)  of  the  thin-walled  open
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section relative to the gravity reference system Gξηz are drawn,
(d) the location of the elastic center K (stiffness center) of the
thin-walled  open  section  is  calculated  using  a  repetitive
mathematical procedure, (e) the location of the principal start
point MO(x 0, y 0) of the thin-walled open section is determined.
It  is  worth  noting  that  this  start  point  is  needed for  the  right
calculation of the sectorial coordinates and for the calculation
of  the  minimum  numerical  value  of  the  warping  moment  of
inertia  Iω  of  the  thin-walled  open section,  which  is  the  exact
value  of  Iω  according  to  Vlasov  torsion  theory,  (f)  the
numerical  value  of  the  warping  moment  of  inertia  Iω  of  the
thin-walled open section is calculated, (g) the warping stiffness
of the core is calculated and, last but not least, (h) the normal
stresses  at  the  middle  section  of  a  folded  plate  along  the
longitudinal dimension are calculated, considering the bi-axes
flexure  with  the  bi-moment  phenomenon.  All  the  above-
mentioned properties give the exact solution of the folded plate
in  longitudinal  dimension  according  to  Bernoulli  bending
theory for prismatic beams (bending moments and axial force)
and, additionally, according to Vlasov torsion theory (i.e. about
the  warping  moment  or  bi-moment  concept)  for  thin-walled
open sections. This exact solution can be used for checking and
assessment  of  the  reliability  of  the  results  of  various  F.E.M.
analysis software, since it is directly based on the superposition
of Bernoulli  bending theory and Vlasov torsion theory while
the finite element method is approximate.
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