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Abstract:

Background:

Although the dynamic response of rigid block-like structures standing free on a rigid foundation has been extensively studied to date,
only a limited number of studies have focused on the dynamics of such systems when seismically isolated.

Objective:

This paper presents a comprehensive investigation on the dynamic response of base-isolated rigid blocks subjected to pulse-type base
excitation, with the aim of identifying potential trends in the response and stability of the system.

Method:

The model adopted in this study consists of a rectangular-prismatic rigid block standing free on a seismically-isolated base, which, on
the assumption of sufficiently-large friction, can be set into rocking on top of the moving base under dynamic excitation. The study
examines in depth the motion of the block/base system with a large-displacement formulation that combines the nonlinear equations
of motion with a rigorous model governing impact. Two isolation-system models are utilized in the analysis, a linear viscoelastic
model and a bilinear hysteretic model.

Results:

An extensive numerical investigation was performed to calculate the rocking response of the block under simple acceleration pulses
and recorded pulse-type earthquake motions of various amplitudes and frequency content. Response-regime spectra for non-isolated
and isolated blocks of varying geometric characteristics have been constructed to evaluate the system performance with respect to the
rocking initiation and overturning of the block.

Conclusion:

The study showed that, regardless of block size and excitation period, seismic isolation increases the acceleration required to initiate
rocking, a benefit that increases as the isolation period increases. In regard to the stability of the rocking block, the use of isolation
yields a better system performance for smaller-sized blocks both for short- and mid-period excitations, provided that the isolation
system is suitably designed. On the contrary, for long-period pulses, the use of isolation is practically not beneficial in improving the
stability of the rocking block, irrespective of its size.

Keywords: Seismic isolation, Rigid block, Rocking, Impact, Overturning, Pulse-type base excitation.

1. INTRODUCTION

A large number of research papers in the literature have been devoted to the study of the dynamic behavior of rigid
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block-like structures to base excitation. Housner's landmark study [1] constitutes perhaps the first systematic work that
provided basic understanding on the rocking response of a rigid block and motivated further scientific interest e.g. [2 -
12]. Considering a slender rigid block resting upon a rigid foundation, based on the assumption of perfectly-inelastic
impact and sufficient friction to prevent sliding, Housner investigated the free- and forced-vibration rocking response to
a rectangular pulse, a half-sine pulse, and an earthquake-type excitation. More recently, motivated primarily by the need
to mitigate the seismic risk of objects of cultural heritage, a rather limited number of studies on the rocking response of
a rigid block with its base seismically isolated have been pursued e.g. [13 - 17].

This paper presents a comprehensive mathematical formulation for the nonlinear rocking response of seismically-
isolated free-standing rigid blocks to base excitation. The study examines in depth the system response based on a large-
displacement formulation that combines the nonlinear equations of motion together with a rigorous model governing
impact. The mathematical treatment of the problem is broad in scope in that it is neither restricted to small rotations nor
slender blocks. Despite the apparent geometric simplicity of the problem, the mathematical description of the system
dynamics  is  profoundly  complex,  mainly  due  to  the  inherent  nonlinear  nature  of  the  impact  phenomenon  and  the
potential  transition from one oscillation pattern  to  another,  each one governed by different  equations  of  motion.  A
rigorous formulation of the impact problem is presented in this paper based on the study originally published by Roussis
et  al.  [15].  Derived  from  first  principles,  the  model  assumes  point-impact,  perfectly-inelastic  impact  (i.e.  zero
coefficient of restitution), and Coulomb-type friction sufficiently large so that sliding of the block during impact is
prevented.  The  model  elucidates  the  inherent  base-block  dynamic  interaction,  a  fundamental  response  feature  that
distinguishes  the  problem  at  hand  from  the  classic  Housner-type  problem  of  a  rocking  block  impacting  a  rigid
foundation with infinite mass. To the authors’ best knowledge, this model is the first to treat correctly from a theoretical
point  of  view  this  important  aspect  of  the  system  dynamic  response.  Based  on  the  developed  model,  a  computer
program  was  developed  in  Matlab  to  calculate  the  system  response  to  simple  acceleration  pulses  and  pulse-type
earthquake motions of various amplitudes and frequency content. An extensive numerical investigation was carried out
for different geometric characteristics of the block and isolation-system parameters, aiming to identify potential trends
in the rocking response and stability of the system.

2. ANALYTICAL FORMULATION

2.1. Model Description

The adopted  model  consists of a  rectangular-prismatic rigid block  of mass m and centroid mass-moment of inertia
IC , standing free on a seismically-isolated rigid base of mass mb (Fig. (1a)). The block of height H = 2h and width B =
2b is assumed to rotate about the corners O and O'. A measure of the size of the block is given by the half-diagonal

 of  the  rectangle,  while  a  measure  of  its  slenderness  is  given  by  the  height-to-width  ratio  λ  =  h/b  or
equivalently by the angle α = tan-1 (b/h). A measure of the dynamic characteristics of the block, albeit in an approximate
sense since the natural frequency is amplitude-dependent, is given by the size parameter  [1]. Two isolation-
system models are utilized in the analysis: (a) a linear viscoelastic model, defined by parameters kb and cb (presented in
Section 2.2.1), and (b) a bilinear hysteretic model (typified by the friction-pendulum type), defined by parameters µb

and Rb (presented in Section 2.2.2).

Assuming no sliding of the block against the rigid base, when subjected to ground excitation the system can exhibit
two possible oscillation patterns: (a) full-contact, during which the block/base system oscillates as one unit horizontally
with displacement u(t)— 1DOF response (Fig. (1b)), and (b) rocking, during which the rigid block pivots on its edges
with  rotation  angle  θ(t)  as  the  supporting  base  translates  horizontally  with  u(t)—  2DOF  response  (Fig.  (1c)).  The
rotation angle of the block is denoted by θ(t), positive in the clockwise sense, and the horizontal displacement of the
base with respect to the foundation is denoted by u(t).

2.2. Equations of Motion

When subjected to horizontal ground acceleration , the supporting base will oscillate in the horizontal direction
with a displacement u(t) relative to the foundation. The rigid block will be set into rocking on top of the moving base
when the overturning moment due to external loads exceeds the resisting moment due to gravity, yielding the following
condition

2 2R b h= +

 3 / 4p g R=

gx
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Fig. (1). Model at rest and oscillation patterns considered.

(1)

If the total acceleration of the base  is  positive, then rocking of the block takes place about corner O', or else if
it is negative rocking takes place about corner O.

The governing equations for each regime of motion are derived next through a large-displacement formulation (not
restricted  to  slender  blocks)  by  means  of  the  Lagrange  method,  for  two  seismic-isolation  models.  The  problem
description will be presented in terms of the geometric parameters of the block (b, h),  the inertia parameters of the
system (m, mb), the constitutive parameters of the isolation system (kb, cb or µb, Rb), and the horizontal component of
ground acceleration .

2.2.1. Linear Model for Isolation System

Consider first the block isolated with a linear isolation system composed of a linear spring with stiffness kb and a
linear  viscous  damper  with  coefficient  cb,  by  interposing  a  rigid  base  of  mass  mb.  The  behavior  of  such  a  linear-
viscoelastic model in terms of the lateral force developed in the isolation system is described by:

(2)

The equation governing the response in the full-contact regime, in which the block remains in full contact with the
horizontally moving base, is given by:

(3)

Equation (3) is the classical second-order differential equation governing the response of a single-degree-of-freedom
system of mass (m+mb) to ground excitation. The (isolation) system period Tb and damping ratio ξb are given by the
following expressions, respectively:

(4)

(5)

In the rocking regime, the system possesses two degrees of freedom. Using as generalized coordinates q1 ≡ u, the
horizontal translation of the base relative to the ground, and q2 ≡ θ, the rotation angle of the block about a base corner,
Lagrange’s equations take the form:
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(6)

in which T denotes the kinetic energy of the system, V the potential energy of the system, and Qi the generalized non-
conservative forces.

For the case when the block rotates about corner O (θ > 0), the kinetic energy of the system is obtained as:

(7)

in which  for a rectangular block.

The first term in Eq. (7) is associated with the horizontal translation of the base, and the second and third terms are
associated with the general planar motion of the block (composed of a pure-translation component and a pure-rotation
component, both with reference to the mass center of the block).

The potential energy of the system is obtained as:

(8)

The generalized forces Qi are derived through the virtual work of the non-conservative forces as:

(9)

Substituting the appropriate derivatives of the kinetic and potential energy of the system (Eqs. (7) and (8)), together
with the expressions for the non-conservative forces (Eq. (9)), into Lagrange’s equations (Eq. (6)) gives the equations of
motion for rotation about O (θ > 0). The equations of motion for rotation about O' (θ < 0) can be derived in a similar
manner.  Combining  the  equations  for  rotation  about  O  and  O',  leads  to  the  following  compact  set  of  equations
governing the rocking regime of the block over of the translating base:

(10)

(11)

where sgnθ denotes the signum function in θ.

Evidently, the mutually-coupled equations governing the rocking regime are highly nonlinear and not amenable to
closed-form solution even for the simplest form of ground excitation. Note that Eqs. (10) and (11) hold only in the
absence of impact (θ ≠ 0). At that instant, both corner points O and O' are in contact with the base, rendering the above
formulation invalid. The impact problem is addressed separately in Section 2.3.

2.2.2. Nonlinear Model for Isolation System

Consider the bilinear hysteretic model to represent the mechanical  behavior of friction-pendulum-type isolation
system, described by:

(12)

where Rb is the radius of curvature and µb is the coefficient of friction of the friction-pendulum (FP) isolators; and Z is a
dimensionless variable describing the rigid-plastic behavior being governed by the following differential equation
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(13)

in which Y is the yield displacement, and β, γ are dimensionless parameters that control the shape of the hysteresis loop,
with assigned values: β = 0.1, γ = 0.9, Υ = 0.3mm [18].

In Eq. (12),  the coefficients of u  and Z  represent the second slope of the bilinear model and the strength of the
system, respectively.

The equation governing the response in the full-contact regime is readily obtained as:

(14)

In the rocking regime, for the case when the block rotates about corner O (θ > 0), the kinetic energy of the system is
again given by Eq. (7), while the potential energy and the generalized forces of the system are derived respectively as:

(15)

(16)

Substituting the expressions for  the kinetic energy,  the potential  energy,  and the non-conservative forces of  the
system into Lagrange’s equations yields the governing equations of motion for rotation about O (θ > 0). Analogous
procedure can be followed for deriving the governing equations of motion for rotation about O' (θ < 0). A combined set
of equations governing rocking of the block about O and O' on top of the moving base (valid for θ ≠ 0) takes the form

(17)

(18)

where sgn θ denotes the signum function in θ.

2.3. Impact Model

A rigorous mathematical formulation of the impact problem is presented in this paper, based on the study originally
published by Roussis et al. [15]. To the authors’ best knowledge, this model was the first to treat correctly from the
theoretical point of view this important aspect of the system dynamic response.

The dynamic response of the system is strongly affected by the occurrence of impact of the rocking block on the
horizontally-moving base. In fact, impact affects the system response on many different levels. On one level, it renders
the  problem  highly  nonlinear  (aside  from  the  nonlinear  nature  of  the  equations  themselves)  by  virtue  of  the
discontinuity introduced in the response (i.e. the governing equations of motion cease to be valid at θ = 0). As a result,
impact  causes  the  system  to  switch  from  one  oscillation  pattern  to  another  (potentially  modifying  the  degrees  of
freedom),  each one governed by a  different  set  of  differential  equations.  This  in  turn entails  that  the integration of
equations  of  motion  governing the  post-impact  response  must  account  for  the  ensuing instantaneous  change of  the
system  velocity  regime.  In  this  regard,  the  dynamic  response  is  critically  influenced  by  impact,  in  that  impact
contributes (exclusively) to the energy dissipation in the system, manifested through the reduction of the post-impact
velocities.

Therefore, the critical role of impact in the dynamics of the system necessitates a rigorous formulation of the impact
problem.  In  this  paper,  a  model  governing  impact  is  derived  from  first  principles  using  classical  impact  theory.
According to the principle of impulse and momentum, the duration of impact is assumed short and the impulsive forces
are assumed large relative to other forces in the system. Changes in position and orientation are neglected, and changes
in velocity are considered instantaneous. Moreover, this model assumes point-impact, perfectly inelastic impact (i.e.
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zero coefficient of restitution), impulses acting only at the impacting corner (i.e. impulses at the rotating corner are
small compared to those at the impacting corner and are neglected), and sufficient friction to prevent sliding of the
block during impact.

Based on the assumption of perfectly inelastic impact, the block can exhibit two possible response mechanisms
following  impact:  (a)  rocking  about  the  impacting  corner,  when  the  block  re-uplifts  (no  bouncing),  and  (b)  pure
translation  in  full-contact  with  the  base,  when  the  block’s  rocking  motion  ceases  after  impact.  The  formulation  of
impact is divided into three phases: pre-impact, impact, and post-impact, as illustrated schematically in Fig. (2). In the
following, a superscript “-” refers to a pre-impact quantity and a superscript “+” to a post-impact quantity.

Fig. (2). Impact analysis phases.

2.3.1. Rocking Persists after Impact

Consider the instant at which the block hits upon the translating base from rocking about O and re-uplifts about the
impacting corner, O' (Fig. (2a)). As mentioned before, impact is accompanied by an instantaneous change in velocities,
with the system displacements being unchanged. Therefore, the analysis of impact is reduced to calculating the initial
conditions for the post-impact motion,  and , given the position and the pre-impact velocities,  and 

Considering the block during impact, the application of the principle of linear impulse and momentum in the x and z
direction gives the following equations:

(19)

(20)

(21)

In  Eqs.  (19)  and  (20),  the  pre-  and  post-impact  horizontal  and  vertical  components  of  the  relative  translational
velocity of the mass center can be expressed in terms of the angular velocity of the block as:

(22)

Substituting Eqs. (22) into Eqs. (19)-(20) yields:

 

0, u

, u





 

 


 

 

 

u

gx

 

x

z

xF dt
zF dt
zF dt

xF dt

0, u u

, u

 



   

 

  
 

 

 

 

x

z

u

0

0

, u u

, u

 



   

 

  

 

 

 

u

gx gx

� 
�
�

uu u�u� 
�
�

 .

   z x C Cb F dt h F dt I I       

,   ,   ,   x h z b x h z b                   

in  which  ∫Fx  dt  and  ∫Fz  dt  are  the  horizontal  and  vertical  impulses  (assumed  to  act  at  O' ); ,
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(23)

(24)

Equations (21),  (23),  and (24)  constitute  a  set  of  three equations  in  four  unknowns 
Equivalently, these equations can be combined in one equation (by eliminating the two impulses) in two unknowns

 yielding:

(25)

in which for rectangular block the centroid mass moment of inertia was taken as 

One  additional  equation  is  therefore  required  to  uniquely  determine  the  post-impact  velocities  and  . By
considering the system in its entirety during impact, it can be stated that the horizontal impulse on the system is zero,
resulting in the conservation of the system’s linear momentum in the horizontal direction. That is,:

(26)

Alternatively, instead of considering the conservation of linear momentum (in the horizontal direction) of the entire
system, one can apply the principle of linear impulse and momentum (in the horizontal direction) of the base alone,
reaching at the same result (Eq. (26)).

Combining Eqs. (25) and (26) gives the post-impact velocities of the system (i.e. the angular velocity of the block
and the translational velocity of the supporting base) as:

(27)

(28)

in which λ = h/b is the slenderness ratio and ρ = m/mb is the mass ratio.

The  coefficient  of  “angular  restitution”  ε  in  Eq.  (27),  associated  with  the  reduction  of  the  post-impact  angular
velocity of the block, is defined by:

(29)

and the coefficient of “linear restitution” β1 in Eq. (28), associated with the reduction of the post-impact linear velocity
of the rigid base, is defined by:
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Equations (27) and (28)  give the system velocities  immediately  after impact from  rocking about O (realized when
. Identical expressions are derived for the case of impact from rocking about O' (realized when .

It is worth noting that the coefficient of restitution e as defined in classical impact theory, relates pre- to post-impact
translational  velocities  normal  to  the  impact  surface  ,  and  hence  it  must  not  be  confused  (as  often
encountered in the literature) with the coefficient of “angular restitution” ε defined in Eq. (29), which relates the pre- to
post-impact angular velocities of the body . In the derivation presented herein, the coefficient of restitution
e enters in the expression  which relates pre- to post-impact vertical relative velocities of the impacting
corner (O'). The assumption of perfectly inelastic impact is then justified by considering e = 0.

Equation (29) reveals that the coefficient of angular restitution ε depends both on the slenderness ratio λ and the
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mass ratio ρ. An upper bound for the coefficient of angular restitution is obtained by taking the limit as the slenderness
ratio λ approaches infinity:

(31)

The value ε  = 1, implying preservation of the magnitude of the angular velocity after impact,  is associated with an
energy-lossless impact.

For the assumption of no-bouncing to be satisfied, the coefficient of angular restitution ε should have a positive
value. In such a case, the angular velocity of the block will maintain sign upon impact, implying switching pole of
rotation from one corner to the other. This requires that:

(32)

The variation of the coefficient of restitution ε with the slenderness ratio λ is shown in Fig. (3a) for different values
of the mass ratio ρ. The strong effect of λ on the coefficient of angular restitution, and hence on the energy dissipated
during  impact,  is  evident  from  this  figure.  This  effect  is  more  pronounced  in  the  lower  λ-range  (stocky  blocks).
Similarly, the dependency of coefficient ε on the mass ratio ρ is seen to be weak for very slender blocks, practically
diminishing for λ > 8.

Fig. 3. Variation of (a) coefficient of angular restitution ε, and (b) coefficient  with slenderness ratio λ.

The coefficient β1 in Equation (30), which is associated with the reduction of the post-impact linear velocity of the
rigid base, depends not only on the parameters λ and ρ, but also on the absolute size of the block (in terms of its height).
The normalized  coefficient  is  plotted  against the slenderness ratio λ for different values of the mass ratio ρ
in Fig. (3b). Observe that the value of the coefficient  decays rapidly with the slenderness ratio λ. As follows from
the comparison of Figs. (3a and 3b), the influence of the mass ratio ρ on the coefficient  is much greater than that on
the coefficient ε.

Equation  (28)  elucidates  the  character  of  base-block  dynamic  interaction  realized  upon  impact.  In  effect,  the
response  of  the  “structure”  (rocking  block)  modifies  the  input  motion  of  the  “foundation”  (translating  base).  This
inherent  response  feature  stands  in  contrast  to  the  dynamic  behavior  of  the  Housner-type  model,  in  which  the
foundation mass is infinite. This interaction ceases to exist when coefficient β1 becomes zero, which by virtue of Eq.
(30) occurs when λ → ∞ or ρ → 0. That is to say, the horizontal velocity of base will remain practically unchanged
upon impact either in the case of extremely slender block (independently of the block size and value of the mass ratio)
or in the case of extremely small block mass relative to the base mass (independently of the block size and slenderness).
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2.3.2. Rocking Ceases after Impact

When rocking of the block on top of the translating base ceases, the system will enter the full-contact regime (Fig.
(2b)). In this case, the analysis of impact is reduced to calculating the post-impact translational velocity of the system,

, given the position and the pre-impact velocities,  and 

By considering the system as a whole during impact, it can be stated that the horizontal impulse on the system is
zero, resulting in the conservation of the system’s linear momentum in the horizontal direction. That is,:

(33)

which upon rearranging terms becomes:

(34)

in which coefficient β2 is defined by:

(35)

3. RESPONSE TO DYNAMIC BASE EXCITATION

The  exact  equations  governing  the  rocking  regime,  formulated  on  the  basis  of  large-displacement  approach  in
Section 2.2,  are  highly nonlinear  and not  amenable  to  exact  closed-form solution,  even if  the  time-variation of  the
excitation is described by a simple analytic function. Accordingly, an ad-hoc computational scheme was developed to
calculate  the  system  response  under  ground  excitation.  The  numerical  integration  of  the  equations  of  motion  was
pursued in Matlab [19] through a state-space formulation. The computer program calculates numerically the response of
a  non-isolated  or  isolated  block  subjected  to  ground  excitation  under  general  conditions,  considering  the  different
possible oscillation patterns, impact, and arbitrary excitation. In particular, at each time step the program determines the
correct  oscillation  pattern  and  integrates  the  corresponding  exact  nonlinear  equations  of  motion.  In  addition,  close
attention is paid to the possibility of transition from one pattern of motion to another and to the accurate evaluation of
the initial conditions for the next pattern of oscillation.

An extensive numerical investigation was performed to calculate the dynamic response of the system under simple
acceleration  pulses  and  actual  pulse-type  earthquake  records,  with  the  aim  of  revealing  interrelations  among  the
problem parameters and highlighting response trends with respect to the rocking initiation and overturning of the block.

3.1. Response to Simple Base-Acceleration Pulses

The  response  of  the  system  is  investigated  under  simple  half-  and  full-cycle  horizontal  acceleration  pulses.  In
particular, considered in the analysis are a half-cycle rectangular pulse, a half-cycle sinusoidal pulse, and a full-cycle
sinusoidal pulse, characterized by amplitude Ag0 and half-cycle duration td  (corresponding  to  frequency ),
expressed mathematically as follows:

(36)

(37)

(38)

The stability of the isolated block is examined in terms of the minimum amplitude of base acceleration required to
overturn the block, by considering the influence of excitation characteristics, the geometric parameters of the block, the
inertia parameters of the base/block system, and the constitutive parameters of the isolation system.
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Fig. (4). Minimum overturning acceleration as a function of block size (left) and excitation frequency (right) for simple acceleration
pulses (λ = 4, ρ = 0.5, Tb = 3.0s, ξb = 0.35).

Fig. (4) plots the normalized minimum overturning base acceleration as a function of block size R  for different
values  of  td  (left),  and  as  a  function  of  the  excitation  frequency  ωp  for  different  values  of  R  (right)  for  the  simple
acceleration pulses used in the analysis. As demonstrated from the left-half of Fig. (4), for the one-sided (rectangular
and  half-sine)  pulses,  the  isolation  has  a  positive  effect  on  the  stability  of  the  block  for  td  <  0.5s  or  equivalently
excitation period Tp < 1s. For the two-sided (full-sine) pulse, this holds true for short-period pulses with td < 0.25s (Tp <
0.5s), while the effectiveness of isolation in the range 0.25<td<0.6s (0.5<Tp<1.2s) is conditional on the size of the block
R . That is, the isolation ceases to improve the stability of the block when subjected to such intermediate-period full-sine
pulses with increasing block size. Nevertheless, the range of R-values for which the isolation is effective increases as
the pulse duration increases. However, it should be noted that, regardless of pulse type, seismic isolation is practically
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not beneficial (with respect to the overturning potential of the block) for long-period excitations (i.e. Tp > 1s for half-
cycle pulses and Tp > 1.2s for full-sine pulses). With reference to the right-half of Fig. (4), the use of isolation results in
enhanced behavior as the block size decreases, unless the system is subjected to long-period acceleration pulses.

Fig.  (5).  Minimum  overturning  acceleration  as  a  function  of  isolation-system  parameters  Tb,  ξb  and  mass  ratio  ρ  for  full-cycle
sinusoidal pulse.

Fig. (5) illustrates the influence of isolation-system parameters (Tb, ξb) and mass ratio ρ = m/mb on the stability of
the isolated block, for different values of R (left) and for different values of td (right) for full-cycle sinusoidal pulse. As
can be seen from Fig. (5), the most influential parameter on the block stability is the isolation-system period Tb. That is,
the minimum overturning base acceleration increases with increasing isolation-system period, provided that the pulse
duration does not exceed a certain value (roughly 1s). Observe also that the influence of each parameter on the stability
is amplified as the pulse duration decreases.
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Fig. (6) presents response-regime spectra in the λ-R space for non-isolated and isolated blocks of varying geometric
characteristics, for half- and full-cycle pulses with duration td = 0.2s and 0.5s. A linear isolation system is considered in
these analyses with Tb = 3s and ξb = 0.35. These spectra depict in a clear way the distinct regimes of block response,
with the cyan area indicating “No Uplift”, the green area “Rocking”, and the red area “Overturning” of the block. A
total of 6,000 nonlinear dynamic analyses were performed in constructing each behavior map. Each dot in these maps
represents the outcome of a single analysis.  As illustrated in Fig.  (6),  the application of seismic isolation yields an
increase in the acceleration required for the initiation of rocking. In addition, the spectra plotted in Fig. (6) elucidate a
counterintuitive  trend  observed  for  bilateral  excitations  (not  observed  for  unilateral  excitations),  in  terms  of  the
overturning potential  of  a  given input-acceleration  amplitude.  That  is  to  say,  for  a  given block size  R,  overturning
occurring  for  certain  slenderness  λ  does  not  necessarily  imply  overturning  of  the  block  with  increasing  λ.  In
mathematical terms, this is equivalent to stating that the (stability) curve defining the boundary between rocking and
overturning is not single-valued. By and large, the application of seismic isolation yields a better system performance,
with respect to the initiation of rocking and overturning potential of the block, for short-period pulses. On the contrary,
for long-period pulses, the use of isolation is not beneficial in improving the stability of the block. Nevertheless, the
application of seismic isolation yields an increase in the acceleration required for the initiation of rocking, regardless of
the pulse period.

Fig. (6). Response-regime spectra in the λ-R space for non-isolated and isolated block of varying geometric characteristics for simple
acceleration pulses with td = 0.2s (left) and td = 0.5s (right) 

Fig. (7) compares the response of the block when isolated, considering a linear viscoelastic model with Tb = 3s and
ξb = 0.35 and a bilinear hysteretic model (typified by friction-pendulum isolator) with parameters µb = 0.11 and Rb =
2.24m (corresponding to Tb = 3s). In particular, Fig. (7) plots the normalized minimum overturning base acceleration as
a function of block size R (left), and as a function of the excitation frequency ωp (right). As can be seen from this figure,
the  calculated  response  of  the  block  is  comparable  for  the  two  isolation-system  models.  This  observation  is  in
agreement with previously published results from analysis using as ground excitation acceleration pulses described by
Ricker wavelets [17]. The small discrepancy observed for large R (> 10m), does not affect qualitatively the conclusions

(Ag0 = 0.5g, ρ = 0.5, Tb = 3.0s, ξb = 0.35). 
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drawn above on the basis of a linear isolation model regarding the stability and the rocking incipient condition of the
block.

Fig. 7. Minimum overturning acceleration for linear and bilinear hysteretic isolation model as a function of block size (left) and
excitation frequency (right) for full-cycle sinusoidal pulse.

3.2. Response to Earthquake Motions

A wide range of recorded pulse-type ground motions, in terms of amplitude and frequency content, were chosen as
input in the analysis of the rocking response of the system. Table 1 lists the characteristics of the motions used for the
dynamic analysis.

Table 1. Ground motions used for the dynamic analysis.

Earthquake Station / Component Magnitude(Mw) Distance (km) PGA (g) PGV (m/s) Tp (s)
1966 Parkfield, CA, USA C02/SN 6.20 0.1 0.48 0.75 2.00
1971 San Fernando, CA, USA PCD/SN 6.55 3.0 1.29 1.20 1.47
1978 Tabas, Iran TAB/SP 7.11 1.2 0.85 1.22 5.26

1979 Imperial Valley, CA, USA

E04/SN 6.50 6.0 0.36 0.78 4.44
E05/SN 6.50 2.7 0.38 0.92 3.92
E06/SN 6.50 0.3 0.44 1.12 3.85
E07/SN 6.50 1.8 0.46 1.09 3.64

EMO / SN 6.50 1.2 0.38 1.15 2.94

1994 Northridge, CA, USA

JFA/SN 6.70 5.2 0.39 1.05 3.03
RRS/SN 6.70 6.0 0.89 1.73 1.25
SCG/SN 6.70 5.1 0.59 1.34 2.94
SCH/SN 6.70 5.0 0.89 1.22 3.03
NWS/SN 6.70 5.3 0.41 1.17 2.70

1995 Aigion, Greece
AEG/Long 6.33 6.0 0.50 0.41 0.71
AEG/Tran 6.33 6.0 0.55 0.52 0.68

1999 Izmit, Turkey

ARC/SN 7.40 14.0 0.13 0.44 7.14
SKR/SP 7.40 3.1 0.41 0.80 9.52
GBZ/SN 7.40 11.0 0.26 0.41 4.76
GBZ/SP 7.40 11.0 0.03 0.29 6.06

1977 Bucharest, Romania BRI / SN 7.3 190 0.21 0.75 2.13
1994 Northridge, CA, USA Pacoima / PKC090 6.7 8.2 0.30 0.31 0.61
2004 Parkfield Cholame 3W / 360 6.0 8 0.57 0.38 0.52

The  stability  of  the  isolated  block  is  again  examined  in  terms  of  the  minimum  amplitude  of  base  acceleration
required to overturn the block, by considering the influence of excitation characteristics, the geometric parameters of
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the block, the inertia parameters of the base/block system, and the constitutive parameters of the isolation system.

Representative  results  are  shown in  Fig.  (8)  for  the  SN-component  of  the  BRI record from the  1977 Bucharest
earthquake, and the SN-component of the EMO record from the 1977 Imperial Valley motion (with prevailing period Tp

= 2.13s and Tp = 2.94s, respectively, based on Mavroeidis and Papageorgiou, [20]), as well as the 90-component of the
Pacoima Dam record from the 1994 Northridge earthquake and the 360-component of the Cholame-3W record from the
2004 Parkfield event (with prevailing period Tp = 0.61s and Tp = 0.52s, respectively, based on Bray and Rodriguez-
Marek, [21]). In particular, Fig. (8) plots the minimum ground acceleration needed to overturn the block as a function of
block size R, for both the non-isolated and isolated case (with isolation-system period Tb= 2s and Tb = 3s). As indicated
in this figure, for the short-period Parkfield, Cholame-3W record (with Tp = 0.52s), the isolation system has a positive
effect on the stability of the block, provided that the isolation system is designed to have sufficiently large period (case
of Tb = 3s). Note that, for the case of the intermediate-period Northridge, Pacoima-Dam record (with Tp = 0.61s), the
effectiveness of isolation is conditional on the size of the block R, that is to say the isolation ceases to improve the
stability  of  the  block  as  the  block  size  increases.  On  the  contrary,  for  the  long-period  Bucharest,  BRI  record  and
Imperial Valley, EMO record (Tp > 2s), the application of seismic isolation does not prove beneficial in improving the
stability of the block. It is worthy of noting that these response trends, with respect to the excitation period, are in line
with the observed trends for the case of simple full-cycle acceleration pulses.

Fig. (8). Minimum overturning acceleration for pulse-type earthquake motions with varying frequency content. (λ = 4, ρ = 0.5, ξb =
0.2).

Figs. (9 and 10) depict response-regime spectra in the λ-R space for non-isolated and isolated blocks of varying
geometric characteristics, for pulse-type earthquake motions with varying frequency content. These spectra suggest that,
regardless of the excitation period,  the use of isolation results  in an increase in the acceleration required to initiate
rocking,  a  benefit  that  increases  as  the  isolation  period  increases.  The  effectiveness  of  isolation  in  increasing  the
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stability of the block is evident in the case of the Parkfield, Cholame-3W record (Tp = 0.52s), the Aigion, AEG/Long
record  (with  Tp  =  0.71s),  and  the  Aigion,  AEG/Tran  record  (with  Tp  =  0.68s).  This  is  also  true  for  the  case  of  the
Northridge,  Pacoima-Dam record  (with  Tp  =  0.61s),  with  the  exception  of  very  slender  blocks  (large  λ)  where  the
effectiveness of isolation depends on the size of the block R. On the contrary, for the long-period Tabas, TAB record,
Imperial Valley, EMO record, the Parkfield, C02 record and the Northridge, NWS record (with Tp > 2s), the presence of
isolation is not beneficial with respect to the stability of the block. Similar observations have been made from analysis
results with simple full-cycle acceleration pulses.

Fig. (9). Response-regime spectra in the λ-R space for a non-isolated and isolated block of varying geometric characteristics under (a)
Tabas, TAB / SP (Tp = 5.26s), (b) Imperial Valley, EMO / SN (Tp = 2.94s), (c) Parkfield, Cholame 3W / 360 (Tp = 0.52s), and (d)
Northridge, Pacoima / 90 (Tp = 0.61s) records. (ρ = 0.5, ξb = 0.35).

The effect of isolation-system parameters on the block behavior is illustrated in Fig. (10) through response-regime
spectra in the Tb-ξb space for the considered earthquake records. These spectra specify the values of the constitutive
parameters of the isolation system that provide improved performance of the analyzed block subjected to the specific
pulse-type base  excitations.  As  seen from Fig.  (11),  the  range of  (Tb,  ξb)  values  corresponding to  enhanced system
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performance is considerably larger for the case of short-period records. The effect of block size R is shown in the Tb-ξb

spectra of Fig. (12) for the Northridge, Pacoima / 90 record for a given block slenderness λ. Observe that the boundary
between no-uplift and rocking regimes (cyan and green areas, respectively) is invariant to the change of block size R,
justifying that the initiation of rocking is not dependent on the absolute size of the block (but rather on the height-to-
width ratio λ, as Eq. (1) suggests). Moreover, the unfavourable (red) region in the Tb-ξb space entailing overturning of
the block is reduced as the block size R increases, a response trend also observed in the case of the simple acceleration
pulses (Fig. (5 left)). Evidently, the damping ratio, ξb, has a significant influence on the effectiveness of isolation. In
particular, the effectiveness of isolation is reduced as the damping ratio decreases.

Fig. (10). Response-regime spectra in the λ-R space for a non-isolated and isolated block of varying geometric characteristics under
(a) Parkfield, C02 / SN (Tp = 2.00s), (b) Northridge, NWS / SN (Tp = 2.70s), (c) Aigion, AEG / Long (Tp = 0.71s), and (d) Aigion,
AEG / Tran (Tp = 0.68s) records. (ρ = 0.5, ξb = 0.35).
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Fig. (11). Response-regime spectra in the Tb-ξb space for isolated block under Bucharest, BRI / SN, Imperial Valley, EMO / SN,
Parkfield, Cholame 3W / 360 and Northridge, Pacoima / 90 records. (λ = 4, ρ = 0.5, R = 6m).

Fig. (12). Response-regime spectra in the Tb-ξb space for isolated block of varying size R under Northridge, Pacoima / 90 record.
(Tp = 0.61s, λ = 3).

Fig. (13) depicts response-regime spectra in the λ -R space for a wide range of rigid blocks under recorded ground
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motions using a bilinear hysteretic model with parameters µb = 0.11 and Rb = 2.24s (corresponding to Tb = 3s), and a
viscoelastic model with ξb = 0.35 and Tb = 3s. As shown in these figures, the calculated dynamic behavior for the two
types of seismic isolation is comparable, with the initiation of rocking (boundary between cyan and green areas) not
drastically affected.

CONCLUSION

A comprehensive mathematical formulation for the nonlinear response of seismically-isolated free-standing rigid
blocks to base excitation has been presented. Assuming friction large enough to prevent sliding of the block against the
isolation base, when subjected to ground excitation the system can exhibit two possible oscillation patterns, namely
“full-contact”, in which the block/base system oscillates as one unit horizontally (1DOF response), and “rocking”, in
which the rigid block tilts about its edges as the isolation base translates horizontally (2DOF response). The study has
examined the system response through a large-displacement formulation based on the nonlinear equations of motion
and  an  analytical  impact  model.  The  mathematical  treatment  of  the  problem is  broad  in  scope  in  that  it  is  neither
restricted to small rotations nor slender blocks.

Recognizing the critical role of impact in the dynamics of the system, a rigorous mathematical formulation of the
impact  problem has  been  presented  in  this  paper.  The  model  assumes  point-impact,  perfectly-inelastic  impact,  and
sufficient friction to prevent sliding of the block during impact. Closed-form expressions have been derived for the
post-impact  velocities  of  the  system  in  terms  of  their  pre-impact  counterparts,  thereby  defining  the  coefficient  of
“angular restitution” ε and the coefficient of “linear restitution” β1 associated with the reduction of the angular velocity
of the block and the linear velocity of the supporting base, respectively. The impact model developed elucidates the
inherent base-block dynamic interaction, a fundamental response feature that distinguishes the problem at hand from the
classic Housner problem of a rocking block impacting a rigid foundation with infinite mass. This interaction ceases to
exist (with the velocity of base remaining practically unchanged upon impact) in the case of extremely slender blocks (λ
→ ∞) or extremely small block-to-base mass ratio (ρ → 0).

Fig. (13). Response-regime spectra in the λ-R space for a class of isolated rigid blocks under (a) the SN component of 1979 Imperial
Valley,  CA,  USA  earthquake  (EMO  station)  and  (b)  the  SN  component  of  1979  Imperial  Valley  E05  earthquake

.

On the basis of the proposed analytical model, a computer program has been developed to calculate the dynamic

.( 0.5  , 0.11b  , 2.24mbR  , 3sbT  ) 
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response of the system by considering different oscillation patterns, impact occurrence, and arbitrary excitation. An
extensive  numerical  investigation  was  performed  to  calculate  the  dynamic  response  of  the  system  under  simple
acceleration pulses and recorded earthquake motions, aiming to identify potential trends in the rocking response and
stability  of  the  system.  A wide range of  recorded pulse-type ground motions,  in  terms of  amplitude and frequency
content, were chosen as input in the analysis.

The  investigation  has  shown  that,  regardless  of  block  size  and  excitation  period,  the  use  of  isolation  yields  an
increase  in  the  acceleration  required  for  the  initiation  of  rocking,  a  benefit  that  increases  as  the  isolation  period
increases. This is critical for structures or elements of high importance for which preventing rocking altogether during
an earthquake is essential for their effective seismic protection. With respect to the stability of the rocking block, the use
of isolation yields a better system performance for smaller-sized blocks both for short-  and mid-period excitations,
provided  that  the  isolation  system  is  suitably  designed.  The  range  of  R-values  for  which  the  isolation  is  effective
increases with increasing excitation period. On the contrary, for long-period pulses, the application of seismic isolation
does not prove beneficial in improving the stability of the block, irrespective of its size. Moreover, the analysis results
demonstrated that the choice of isolation-system parameters has a significant influence on the effectiveness of seismic
isolation. In particular, the effectiveness of isolation increases as the period of the isolation system Tb increases or as the
damping ratio ξb increases. The response of the system has been calculated considering two seismic-isolation models, a
linear viscoelastic model and a bilinear hysteretic model. The analysis has demonstrated that the calculated responses on
the basis of the two isolation-system models are in good agreement.  The study further showed that the response to
simple full-cycle acceleration pulses is in line with the observed trends for the case of recorded pulse-type earthquake
motions.
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